Energy and Emissions Savings and Potential in Wastewater Treatment Facilities

Ryan J. Milcarek, Ph.D.

Assistant Professor School for Engineering of Matter, Transport and Energy, Arizona State University 501 E. Tyler Mall, Tempe, AZ 85287-6106, USA

> Assistant Director ASU Industrial Assessment Center

Overview

□Industrial Assessment Center at ASU

□ Water Energy Nexus

□Wastewater Treatment Plants (WWTP)

□Biogas Composition

Combined Heat and Power

Case Study

Acknowledgement

Rene Villalobos, Ph.D. Director of the IAC@ASU Associate Professor Industrial Engineering

Patrick Phelan, Ph.D. Assistant Director of the IAC@ASU Professor Mechanical and Aerospace Engineering

Gamze Gungor Demirci, Ph.D. IAC Program Manager@ASU Environmental Engineering

Derall Riley Undergraduate Mechanical Engineering

Nico Campbell PhD Student System Engineering

Jiashen Tian PhD Student Mechanical Engineering

The IAC Program

- The US Department of Energy, Advanced Manufacturing Office, currently supports 31 Industrial Assessment Centers (IACs) at universities across the US.
- These Centers provide free evaluations of small and medium-sized manufacturing facilities to reduce costs by increasing energy efficiency, improving productivity, and decreasing waste.
- □IACs train the next-generation of energy savvy engineers, more than 60 percent of which pursue energy-related careers upon graduation.

Locations of Existing IACs

IAC@ASU

- The IAC@ASU was first established in 1990 and ran until 2006 (completing 435 assessments). It was re-established in 2016 and has conducted 44 assessments since then.
- In most cases, the team performs the assessment in a single day by working with plant personnel to identify savings opportunities. The team examines utility bills, facilities, equipment, manufacturing processes, and waste streams.
- □Within 60 days, an easy-to-read, confidential report is delivered documenting current practices and recommending ways to save money by reducing energy and waste streams and improving the manufacturing processes.

How An Assessment is Conducted

- 1. Determine eligibility
- 2. Obtain utility bills
- 3. Conduct on-site assessment Typically 1 day
- 4. Generate recommendations for the facility
- 5. Research and analyze recommendations

Generate simple payback for each recommendation

- 6. Deliver confidential report within 60 days, outlining recommendations and their paybacks.
- 7. Follow up 6 to 9 months later on implementation status

Eligibility

□Standard Industrial Code between 2000-3999 (i.e. manufacturing/industrial)

- Gross annual sales less than \$100,000,000
- Annual energy bills between \$100,000 and \$2,500,000
- Generation Fewer than 500 employees on site
- □New initiative to have 2 water facilities assessed per year

Average Savings for 2019 Clients

ASU's Top Ten Assessment Recommendations

	ARC	Description	Recc'd	Average Savings	Average Cost	Average Payback	lmp Rate
1	2.7142	UTILIZE HIGHER EFFICIENCY LAMPS AND/OR BALLASTS	602	\$4,893	\$8,986	2.5	43.9%
2	2.4133	USE MOST EFFICIENT TYPE OF ELECTRIC MOTORS	308	\$6,742	\$11,599	2.3	53.4%
3	2.4236	ELIMINATE LEAKS IN INERT GAS AND COMPRESSED AIR LINES/ VALVES	243	\$6,467	\$934	0.4	73.8%
4	2.4239	ELIMINATE OR REDUCE COMPRESSED AIR USAGE	217	\$3,844	\$611	0.3	42.3%
5	2.7135	INSTALL OCCUPANCY SENSORS	182	\$1,190	\$2,165	2.6	23.8%
6	2.7232	REPLACE EXISTING HVAC UNIT WITH HIGH EFFICIENCY MODEL	145	\$7,190	\$12,918	2.3	38.4%
7	2.4111	UTILIZE ENERGY-EFFICIENT BELTS AND OTHER IMPROVED MECHANISMS	136	\$2,505	\$220	0.1	55.4%
8	2.4146	USE ADJUSTABLE FREQUENCY DRIVE OR MULTIPLE SPEED MOTORS ON EXISTING SYSTEM	132	\$15,991	\$18,654	2.0	26.9%
9	3.6192	USE A LESS EXPENSIVE METHOD OF WASTE REMOVAL	97	\$3,911	\$279	0.1	39.3%
10	2.4314	USE SYNTHETIC LUBRICANT	75	\$1,715	\$1,654	1.3	42.0%

Sorted by number of times recommended

ASU Home ▼ My ASU Colleges and Schools ▼ Map and Locations ▼ Directory SIGN IN Search Q

IAC | ASU Industrial Assessment Center

Request An Assessment Our Team Our Work In the Media FAQ

https://iac.engineering.asu.edu/

Arizona State University

Our Mission

The Industrial Assessment Center at Arizona State University (IAC@ASU) is a Department of Energy (DOE) funded program whose mission is to identify technology, systems and productivity opportunities that result in increasing energy efficiency, reducing waste and providing better financial results for small and medium sized manufacturers, while educating and training the next generation of energy and productivity experts. The Center conducts energy, waste and productivity assessments through one-day site visits at no cost to the facility.

481

Energy Assessments

Completed

3,817

Recommended Actions Suggested

Avg Annual Savings per Implemented Rec

\$12,371

\$39,920

Avg Annual Implemented Savings per Assessment

Find Out More:

Research Topics

Tools for planning and negotiating for shifting peak demand

- □Energy signatures for determining production efficiency
- Development of energy footprints
- □Innovative use of technology (PCMs, shading, etc)

Schedule An Assessment

We're <u>always</u> looking for new clients!

Gamze Gungor Demirci, Ph.D. IAC Program Manager@ASU ggungord@asu.edu Ryan Milcarek, Ph.D. Ryan.Milcarek@asu.edu https://iac.university/ https://iac.engineering.asu.edu/ Phone: 480-727-6098

Water Energy Nexus

Fuel production (Ethanol, ۲ Pumping for water hydrogen, biofuel) extraction Resource extraction & Water Energy Drinking water treatment / mining Desalinization for for Hydropower Drinking water distribution Thermoelectric cooling Water Energy Customer end use Refining Wastewater treatment Emission control (Carbon capture)

Wastewater Treatment Plants (WWTP)

- WWTPs collectively demand around 2-4% of the U.S. energy consumption, ~\$4.7 billion annually (Shen et al. 2015)
- Theoretically municipal wastewater contains 5 to 10 times more chemical and thermal energy than is necessary for its treatment to meet discharge standards (WERF 2011).
- Although only a part of this potential is practically usable, it is possible and feasible for WWTPs to be net energy producers (Frijns et al. 2013)
- Recent legislation and research funds are focusing on WWTPs (Wastewater Efficiency and Treatment Act of 2019)

Y. Shen, et al., Renew. Sustain. Energy Rev. 50 (2015) 346–362.

Water Environment Research Foundation (WERF) (2011). Energy Production and Efficiency Research— The Roadmap to Net-Zero Energy. Alexandria, VA.

Frijns et al. (2013). Energy Conversion and Management, 65, 357-363.

Wastewater Treatment Plants (WWTP)

The general process:

Despite the fact that 43% of U.S. WWTPs generate biogas with anaerobic digesters, as of 2011, only 3.3% utilize the biogas for electricity production via cogeneration (Goff 2011).

C. Goff, Combined heat and power at wastewater treatment facilities : Market analysis and lessons from the field, in: Northeast Biomass Conf., 2011

Biogas Composition

Species	Concentration
CH ₄	60-70%
CO ₂	30-40%
N ₂	0-1%
0 ₂	0-1%
H ₂ O	Saturated
H ₂ S	50-20,000 ppm
CO	0-1%
NH ₃	100 ppm
Siloxane	10 ppm

The composition of biogas varies with feedstock, environmental conditions, seasonal variations, and other factors.

Typical composition ranges are shown here.

Siloxane

Major siloxane impurities in biogas.

Table 12

Siloxanes amount in different WWTPs (the location of each plant is also provided together with Reference for original source data) – Part I (to be continued on the next page).

Compound	Chemical formula	M.W. (g/mol)		Finland [89]	Finland [89] (note 1)	Finland [89] (note 2)	Germany [90]	Germany [90]	US <mark>[91]</mark> (note 3)	Italy (note 4)	Italy (note 4)	Italy (note 4)
Total siloxanes			[mg/m ³]	29.6	2.4	5.5	16.5	6.0	107.4	14.4	10.8	6.2
(D6) Dodecamethylcyclohexasiloxane	C ₁₂ H ₃₆ O ₆ Si ₆	444.92	[mg/m ³]	n.a.	n.a.	n.a.	n.a.	n.d.	6.99	0.7	n.d.	n.d.
(D5) Decamethylcyclopentasiloxane	C10H30O5Si5	370.77	[mg/m ³]	27.05	0.90	4.46	9.31	2.78	56.61	11.0	5.50	3.63
(D4) Octamethylcyclotetrasiloxane	C ₈ H ₂₄ O ₄ Si ₄	296.62	[mg/m ³]	1.21	0.10	0.13	6.69	2.95	32.50	2.5	1.29	0.87
(D3) Hexamethylcyclotrisiloxane	C ₆ H ₁₈ O ₃ Si ₃	222.46	[mg/m ³]	0.00	0.03	0.06	0.17	0.19	3.27	0.0	0.26	0.36
(L4) Decamethyltetrasiloxane	C ₁₀ H ₃₀ O ₃ Si ₄	310.69	[mg/m ³]	1.29	1.29	0.51	0.14	0.02	n.a.	n.d.	3.36	1.34
(L3) Octamethyltrisiloxane	C ₈ H ₂₄ O ₂ Si ₃	236.53	[mg/m ³]	0.03	n.d.	0.2	0.03	0.02	1.93	0.2	0.33	n.d.
(L2) Hexamethyldisiloxane	C ₆ H ₁₈ OSi ₂	162.38	[mg/m ³]	0	0.04	0.09	0.05	0.01	6.14	n.d.	0.07	0.02
(TMS) Trimethylsilanol	C ₃ H ₁₀ OSi	90.20	[mg/m ³]	n.d.	n.d.	n.d.	0.14	0.07	n.d.	n.d.	n.d.	n.d.
Si tot (calculated)	_	_	[mg Si /m ³]	11.0	0.8	2.0	6.2	2.3	40.3	5.4	3.7	2.2

H. Madi, et al., J. Power Sources. 279 (2015) 460–471.

School for Engineering of Matter, Transport and Energy

ASU Industrial Assessment Center

Cogeneration or Combined Heat and Power

- Def. Production of more than one useful form of energy from the same energy source.
- Industries that rely on process heat:

 - □Pulp and paper
 - □Oil production
 - Refining
 - □ Steelmaking
 - Textile

Cogeneration or Combined Heat and Power

D*Efficiency*:

$$\varepsilon_{el} = \frac{\dot{W}_{el}}{\dot{m}_{fuel}HHV_{fuel}}$$

$$\varepsilon_{combined} = \frac{\dot{W}_{el} + \dot{Q}_{p}}{\dot{m}_{fuel}HHV_{fuel}}$$

$$\varepsilon_{combined} = \frac{\dot{W}_{el} + \dot{Q}_{p}}{\dot{m}_{fuel}HHV_{fuel}}$$

Cogeneration for heating and power generation

Cogeneration or Combined Heat and Power

Cogeneration Plant with Adjustable Loads

Turbine 20 kW Boiler (4) 120 kW Process heater (2)100 kW (1)Pump $W_{\text{pump}} \cong 0$

Ideal cogeneration

	Prime Mover								
Characteristic	Steam	Gas	Micro-turbine	Reciprocating	Fuel Cell	Stirling			
	Turbine	Turbine		IC Engine		Engine			
Sizo	50 kW to 250	500 kW to	30 kW to 330	10 kW to 10	5 kW to 3	< 200 kW			
Size	MW	300 MW	kW	MW	MW	< 200 KVV			
	None, biogas	DM filtor	DM filtor	DM filtor	Sulfur, CO,				
Fuel Preparation	fueled boiler	r w mei		r w me	CH_4 can be	None			
	for steam	needed	needed	needed	issues				
Sensitivity to fuel	ΝΙ/Λ	Voc	Voc	Voc	Voc	No			
moisture		165	165	165	165	NO			
Electric efficiency	5-30%	22-36%	22-30%	22-45%	30-63%	5-15%			
(HHV)	5-50 %	22-3070	22-3070	22-4370	30-0378	0-4070			
Overall CHP	80%	65-71%	64-72%	70-87%	62-75%	ΝΔ			
Efficiency (HHV)	00 /0	00-7170	04-7270	10-0170	02-7570				
	Fair,	Good,	Good	Wide range	Wide	Wide range,			
Turn-down ratio	responds	responds	responds	responds	Range, slow	responds			
	within	within a	aujokly	within soconds	to respond	within a			
	minutes	minute	quickly		(minutes)	minute			

	Prime Mover					
Characteristic	Steam	Gas	Micro-	Reciprocating		Stirling
	Turbine	Turbine	turbine	IC Engine	ruei Celi	Engine
Operating issues	High reliability, slow startup, long life	High reliability, requires gas compressor	Fast start- up, requires fuel gas compressor	Fast start-up, noisy	Low durability, low noise	Low noise
Field experience	Extensive	Extensive	Extensive	Extensive	Some	Limited
Commercialization	Numerous	Numerous	Limited	Numerous	Commercial	Commercial
status	models	models	models	models	introduct.,	introduct.,
	available	available	available	available	demo.	demo.
Installed cost (as	\$350-					
CHP system)	1,100/kW (without boiler)	\$700- 2,000/kW	\$1,100- 3,200/kW	\$800-2,900/kW	\$3,000- 10,000/kW	\$1,000- 10,000/kW
Operations and maintenance (O&M) costs	0.4-1¢/kWh	0.6- 1.3¢/kWh	0.8-2¢/kWh	0.8-2.5¢/kWh	1-4.5¢/kWh	1 ¢/kWh
ASU	Industrial Assess	ment Center	Energy			23

Biogas Cogeneration Overview

Prime Mover	Number of Sites	Capacity (MW)	• MicroGT	• ICE <500 mg/	Nm3 • ICE	<250 mg/Nm3		SOFC
Reciprocating engine	54	85.8	8 55				MCF	C
Microturbine	29	5.2	50 -					
Fuel cell	13	7.9	y 45 40	ICI				
Combustion turbine	5	39.9	35 -	ICE				
Steam turbine	2	81.0	30		•••	• µ(ЭT	
Combined cycle	1	28.0	25	•				
Total	104	247.8	1	10	100 Bower outr	1,000	10,000	100,00

C. Goff, Combined heat and power at wastewater treatment facilities : Market analysis and lessons from the field, in: Northeast Biomass Conf., 2011. H. Madi, et al., J. Power Sources. 279 (2015) 460-471.

Biogas Reactions in CHP

Combustion of Biogas:

 $\begin{array}{ll} CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52 \ N_2 & \text{samples} \\ H_2S + 1.5O_2 \rightarrow SO_2 + H_2O & SO_3 + H_2O \rightarrow H_2SO_4 & \text{this zone} \\ ((CH_3)_2SiO)_3 + 12O_2 \rightarrow 3SiO_2 + 6CO_2 + 9H_2O & \text{this zone} \end{array}$

Electrochemical oxidation of Biogas: $CH_4 \rightarrow C + 2H_2$ $H_2 + O^{2-} \rightarrow H_2O + 2e^ C + O^{2-} \rightarrow CO + 2e^ CO + O^{2-} \rightarrow CO_2 + 2e^-$

Layer on the combustion chamber wall

Alvarez-Florez et al., Eng Failure Analysis 50 (2015) 29-38.

$$O_2 + 4e^- \rightarrow 2O^{2-}$$

Siloxanes in Fuel Cells

Si and Ni distribution in the anode from EDS.

H. Madi, et al., J. Power Sources. 279 (2015) 460–471.

Tolerance to Biogas Impurities

CHP Prime Mover Tolerance to Biogas Contaminants											
		Prime Mover									
Characteristic	Steam	Gas	Micro-	Reciprocating		Stirling					
	Turbine	Turbine	turbine	IC Engine	ruei Cell	Engine					
Hydrogen	< 1,000	< 10,000	< 10,000	< 100 ppm	< 1 ppm	< 1,000					
sulfide, H ₂ S	ppm	ppm	ppm			ppm					
Silicon	< 1 ppm	< 1 nnm	< 1 nnm	<100 ppm	< 1 ppm	< 1 ppm					
compounds	< i ppin	< i ppin			< i ppin	< i ppm					

Cost of Impurity removal

The prime mover can handle a small amount of impurities, but if the concentration of impurities is uncontrolled, the CHP lifetime can be reduced to only a few years!

Typical cost of H_2S , water and siloxane removal systems for reciprocating engine CHP.

Current Systems (https://chp.ecatalog.lbl.gov/search)

Emissions

Case Study WWTP – Sizing a CHP System

Inputs								
	UC	Electric Usage	0.05	\$/kWh				
Utilities	DC	Electric Demand	15	\$/kW-mo				
	NGC	Natural Gas	5	\$/MMBtu				
Plant Information	OH	CHP Operating Hours	8,322	hr/yr				
	DM	Thermal Demand Met	0.7	(out of 1)				
Current Litility	EU	Current Electric Usage	40,000,000	kWh/yr				
Usage	NG	Current Natural Gas	25,000	MMBtu/yr				
Osage	DG	Digester Gas Produced	100,000	MMBtu/yr				
Implementation	CC	Raw Capital Cost	2,500	\$/kW				
Costs	OC	Operation Cost	0.02	\$/kWh				
	EF_B	Boiler Efficiency	0.80	(out of 1)				
Efficiencies	EF_T	Thermal Efficiency	0.40	(out of 1)				
	EF_E	Electric Efficiency	0.35	(out of 1)				
Constants	C_{I}	Conversion Constant	293.07	kWh/MMBtu				

Case Study WWTP - Calculations

Case Study WWTP - Results

Case Study WWTP - Results

Case Study WWTP - Results

Conclusions

- IAC@ASU helps industrial or municipal WTPs and WWTPs as well as small- and medium-sized manufacturers increase their energy efficiencies and reduce their energy costs by having no-cost technical assessments.
- □ The Center makes recommendation in various areas, an example of which is presented in this article.
- □ The tool developed by the Center shows that optimal energy savings and payback period are a balance between the biogas produced and additional natural gas needed.

Acknowledgement

□This material is based upon work supported by the U.S. Department of Energy under award number DE-EE0007721.

Schedule An Assessment

We're <u>always</u> looking for new clients!

Gamze Gungor Demirci, Ph.D. IAC Program Manager@ASU ggungord@asu.edu Ryan Milcarek, Ph.D. Ryan.Milcarek@asu.edu https://iac.university/ https://iac.engineering.asu.edu/ Phone: 480-727-6098

