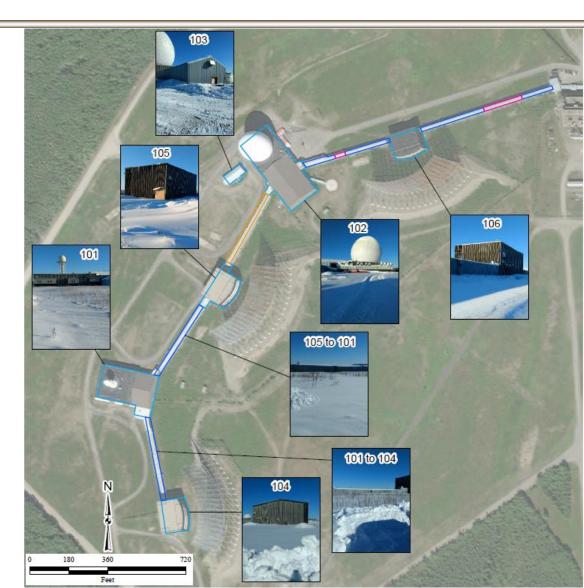


The Ins and Outs of a TSCA Self-Implemented Cleanup Including PCB Bulk Product Waste

Laura McNamara, P.E., PMP HydroGeoLogic, Inc. March 4, 2020


- HydroGeoLogic, Inc. (HGL) conducted a selfimplemented cleanup of Toxic Substances Control Act (TSCA)-level polychlorinated biphenyls (PCBs) between 2017 and 2019.
- The site was a remote secure facility in central Alaska.
- The project also included demolition of multiple unused buildings.
- This presentation will explore what a TSCA selfimplemented cleanup is and the major challenges that were encountered during execution.

▼Structures included:

- 40,000 ft² radar transmitter building
- 58,000 ft² radar transmitter and computer building
- Three 14,000 ft² scanner buildings
- 2,200 ft of utilidor
- 4,000 ft² warehouse building

Activities included:

- Abatement of PCB-laden paint from concrete foundations;
- Remediation of PCB oil spills from concrete foundations;
- Post-abatement/remediation verification sampling;
- Equipment removal and demilitarization;
- Asbestos-containing material (ACM) abatement;
- Other regulated material (ORM) abatement;
- Structure demolition;
- Waste segregation, transportation, and disposal; and
- Post-demolition characterization sampling.

TSCA Regulations

- TSCA self-implemented cleanups are regulated under 40 CFR 761.61(a).
- Entities performing self-implemented cleanups are required to:
 - Perform adequate site characterization;
 - Provide proper notification to EPA and state regulators;
 - Meet required cleanup levels;
 - Ensure proper waste disposal;
 - Verify the cleanup through sampling;
 - Implement land use control restrictions as necessary; and
 - Provide for cleanup documentation and record-keeping.

TSCA Regulations

- Disposal of PCB bulk product waste is regulated under 40 CFR 761.62(b), but what is PCB bulk product waste?
- In 2012, EPA published a reinterpretation regarding PCBcontaminated building materials:
 - Specifically defined "bulk product waste" and "remediation waste" to allow for accelerated and more cost-effective cleanups.
 - Defined as non-liquid bulk wastes or debris from the demolition of buildings and other man-made structures manufactured, coated, or serviced with PCBs.
 - Includes paint, caulking, mastic, sealants, or adhesives containing PCBs >50 parts per million (ppm).

2016 Site Characterization

- The client purportedly performed a TSCA characterization of the site for PCBs in 2016.
 - Total of 96 bulk PCB samples (wood, paint, concrete, etc.).
 - Total of 332 wipe PCB samples (oil, dirt, paint on equipment).
- Characterization also included estimation of amounts of ACM and ORM.

2016 Site Characterization

The 2016 sampling did not follow TSCA requirements (Subparts N and O):

TSCA Requirement	2016 Characterization
3-meter (10 ft) grid size for porous material (concrete) or 1.5-meter (5 ft) grid size for porous material (concrete) to be left in place	40 ft grid for buildings larger than 1,000 ft ² 20 ft grid for buildings less than 1,000 ft ²
Requires minimum of 3 samples per cleanup site or waste location, and no set maximum number of samples	Collected 3 samples per building of concrete, regardless of the number of spills/stained areas per building
Minimum of 3 and maximum of 9 sub- samples per composite sample	Between 2 and 20 sub-samples per composite
Requires sample locations to be marked	Several sample locations not provided on figures
Concrete sampling standard operating procedure recommends 0.5-inch sample depth	Concrete samples collected over 3-inch depth

2016 Characterization

▼PCBs

- Based on the 2016 sampling, a total of 52 items were classified as PCB remediation waste, including:
 - ≻Oil-stained compressors,
 - ≻Oil-stained metal waveguides,
 - >Oil-stained radar antenna equipment,
 - ≻Oil-stained drywall,
 - ➢Painted steel, and

>Oil-stained flooring (vinyl tile, wood, concrete).

2016 Characterization

- The 2016 characterization report logic used to determine remediation waste, bulk product waste, and clean debris was flawed:
 - The report included any PCB with a concentration >50ppm as remediation waste even if it met the bulk product waste definition.
 - The report assumed that all oil/grease at the site contained PCBs and assumed that non-porous items could not be cleaned before disposal.
 - Insufficient concrete sampling led to the conclusion that most of concrete was clean (<1 ppm PCBs).

2016 Characterization vs Actuals

▼ACM:

- A total of 113 different buildings materials were identified in 2016 as being ACM.
- Six new materials were identified during abatement that were ACM and two materials resampled and characterized as non-ACM.
- A total of 24 building materials had increased quantities between 19% and 8,000%.

2016 Characterization vs Actuals

VORM

- A total of 54 different items were identified in 2016 as being ORM.
- One new item was identified and two of the listed items were not identified during abatement.
- A total of eight items had increased quantities between 160% and 200%.

Project Execution - Remediation

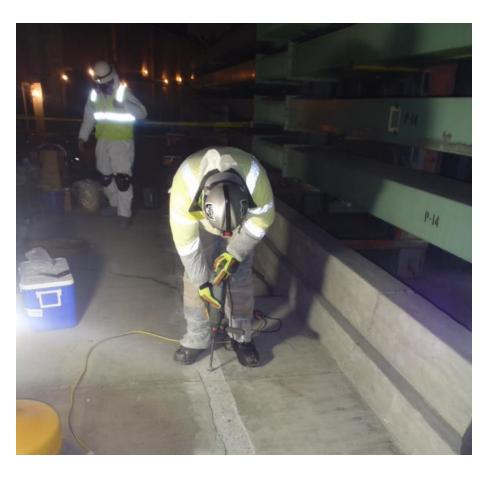
- During execution, EPA approved the following remediation techniques:
 - High efficiency particulate air vacuuming of loose paint chips.
 - Removal of oil from non-porous surfaces using cleaner and rags.
 - Scabbling of paint/oil staining from concrete to be left in place.
- Paint chips, rags, and scabbled paint/concrete were then containerized, characterized and disposed of as PCB remediation waste.

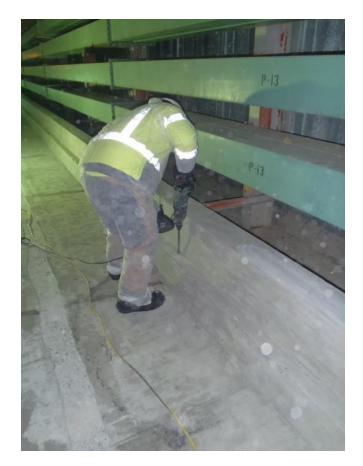
Project Execution - Remediation

Project Execution - Demolition

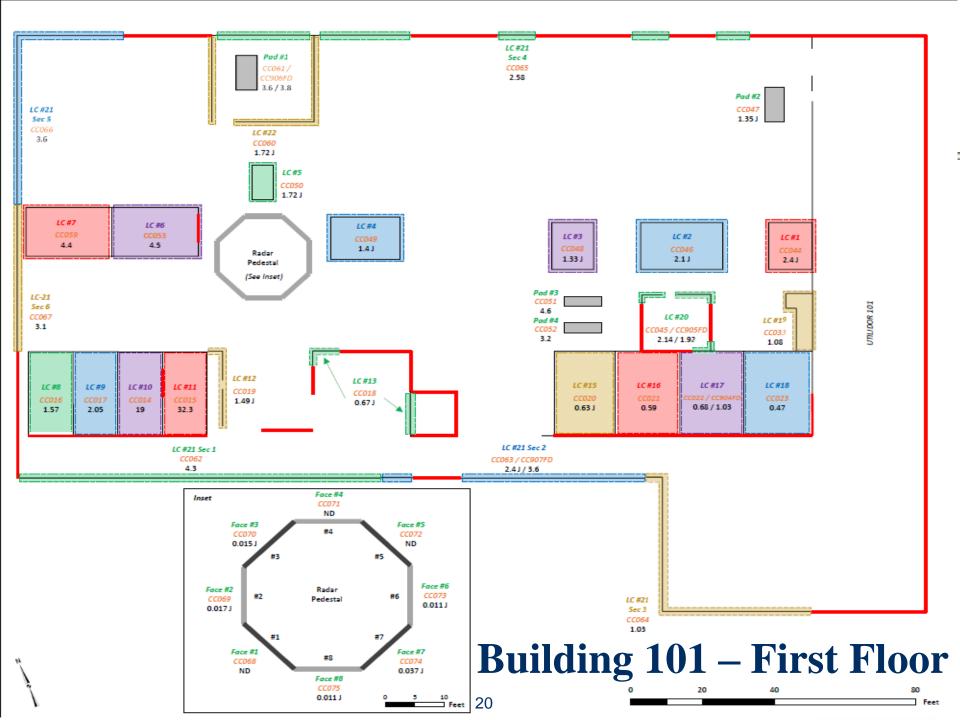
- EPA approved the following demolition assumptions:
 - ACM and ORM abatement were completed prior to structure demolition;
 - All paint in the facility contained PCBs and met the definition of bulk product waste;
 - Only non-stained, non-painted debris was considered clean construction and demolition (C&D) waste; and
 - Stained concrete was assumed to be remediation waste with concentrations <50 ppm.

Project Execution - Demolition

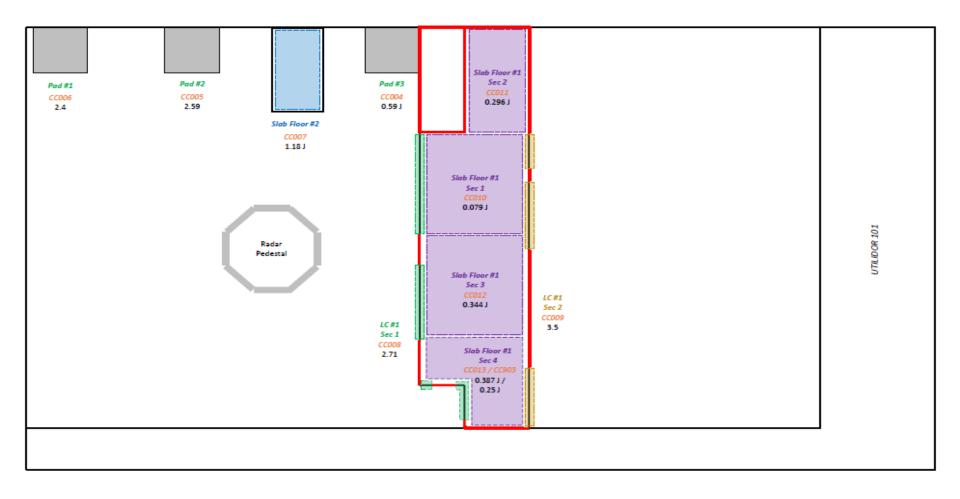

Project Execution – Additional Sampling

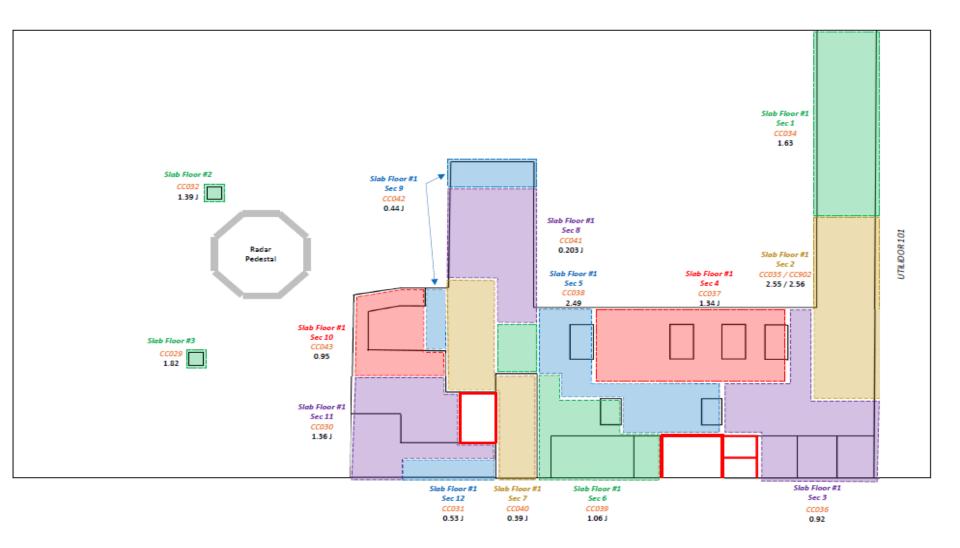

- Based on uncertainties in the characterization data, HGL completed additional characterization sampling of concrete slated for demolition in 2019:
 - Total of 114 concrete samples were collected
 - >44 samples contained PCBs <1 ppm (disposal limit within Alaska)
 - ≻70 samples contained PCBs >1 ppm
 - >None of the samples contained PCBs >50 ppm

FOR CONFIRMENTAL STATES AND CONFIL AND CONFIRMENTAL STATES AND CONFIRMENTAN



Project Execution – Additional Sampling

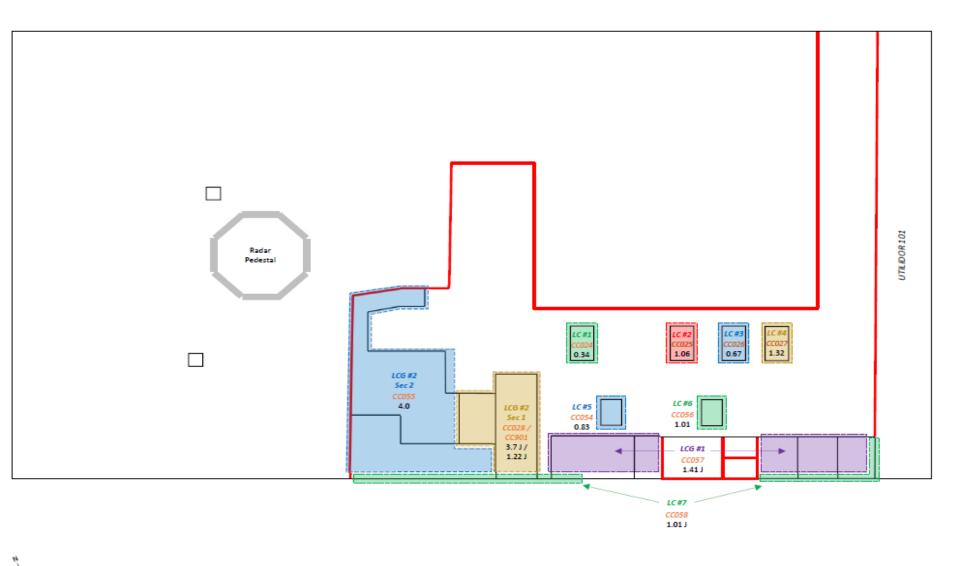



Building 101 - Mezzanine

21

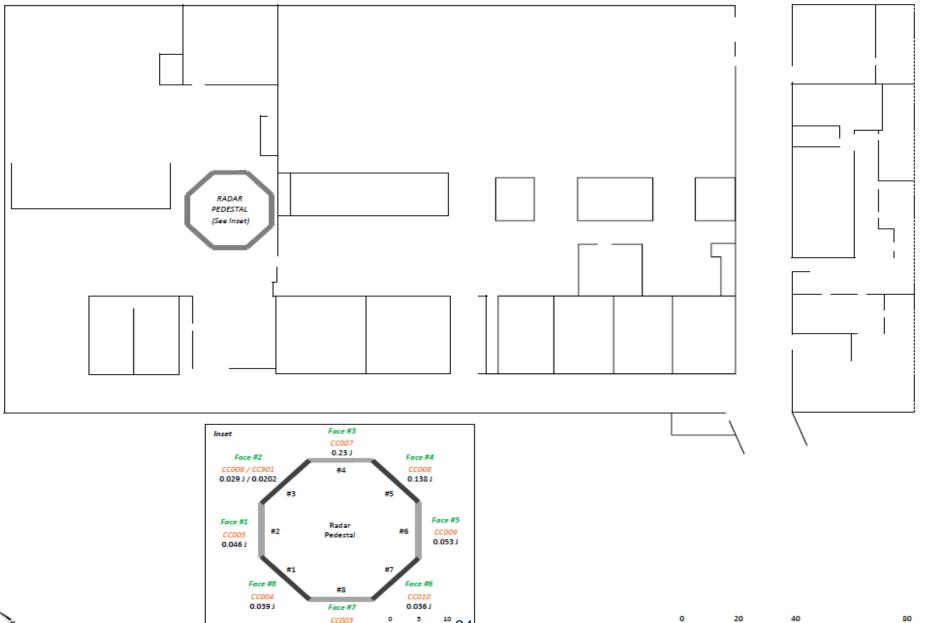
0 20 40 30

Building 101 – Second Floor



20 40 80

22


0

Building 101 – Second Floor

Feet

Building 102 – Radar Pedestal Base

⊐"**⊧**24

0.025 J


N.

Feet

Utilidor Curbing

	7		Sec#1		Sec #2		Sec#3		Sec #4		Sec #5
4		CC149	0.46	CC150	2.1	CC152	1.2	CC153	1.1	CC154	1.3
G 104											
NO.											
BUIL		CC138	1.7	CC139	2.5 J	CC140 / CC5	18 2.2/3.2	CC141	1.1	CC142	2.1
t –											
1										I	

	Sec #6	Sec #7		Sec #8			Sec #9		Sec#10	Sec #11		/
CC155	1.3	CC156 / CC920	0.81/0.77	CC157	0.44	CC158	0.85	CC159	0.74	CC160	1.0 /	7
											- 7	G 10
											1	NICUN
CC143	1.5	CC144 -	2.9	CC145	1.9	CC146	2.9	CC147/CC	919 1.2 / 1.5	CC148 1	4/	BL

Project Execution – Waste Segregation

- One key factor in the successful execution of the project was waste segregation and tracking.
- Due to the various types of materials for disposal, multiple facilities were used:
 - C&D-
 - Denali Borough Landfill, Healy, Alaska
 - ACM-
 - Canaday Homestead Monofill, Salcha, Alaska
 - PCB Bulk Product Waste-

Columbia Ridge Landfill, Arlington, Oregon

PCB Remediation Waste-

Chemical Waste Management Landfill, Arlington, Oregon

> US Ecology, Beatty, Nevada,

Project Execution – Waste Segregation

- ▼Additional Disposal Facilities:
 - Non-PCB Oil/Wastewater-
 - ➢NRC Alaska, Anchorage, Alaska
 - Recycling-
 - Central Recycling Services, Anchorage, Alaska
 - Arctic Fire and Safety, Fairbanks, Alaska
- Important to have a strong waste manager.
- Improper segregation can lead to:
 - Material being incorrectly manifested and disposal in the wrong landfill.
 - Regulatory violations and efforts to retrieve the material for proper disposal.

Project Execution – Waste Segregation

Project Execution – Waste Totals

- The following waste totals were generated during the project:
 - PCB Bulk Product Waste
 - > 18,422 tons of building debris and concrete in 1,039 containers
 - PCB Remediation Waste
 - > 19 containers of remediation waste, including:
 - 141 drums (55-gal) of paint chips, rags, and concrete debris
 - 7 totes (350-gal) of wastewater and waste oil
 - 80 tons of contaminated soil
 - > 110,000 gallons of uncontaminated wastewater
 - C&D Waste
 - ➤ 293 tons of uncontaminated debris

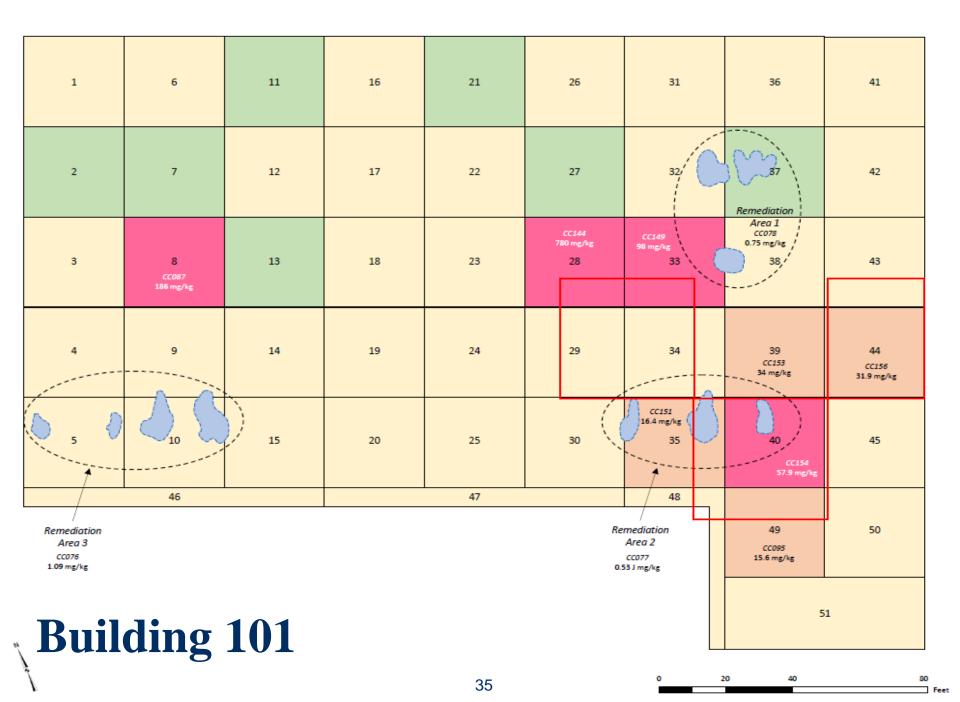
Project Execution – Waste Totals

- The following waste totals were generated during the project (cont'd):
 - Recycled Materials
 - > 176 tons of aluminum, lead, and stainless steel
 - ≻ 90 fire extinguishers
 - ACM
 - ≻6,061 bags of friable ACM
 - ≻4,578 bags of non-friable ACM
 - ORM
 - 7 containers including 743 batteries, 1,279 fluorescent ballasts and 4,500 blubs, and 151 mercury containing items

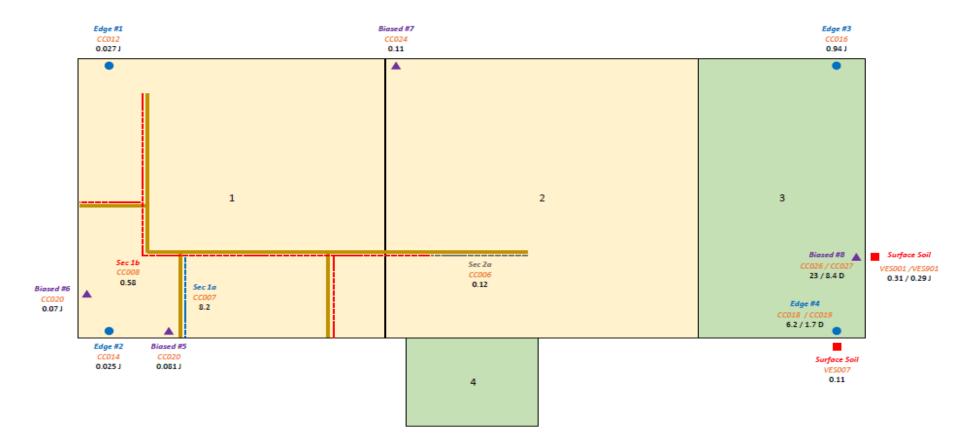
- The foundations of the buildings were always planned to be left in place and covered with soil.
 - This reduced the amount of concrete debris for removal.
 - In-place closure was based on 2016 characterization sampling showing the unstained concrete contained <1 ppm PCBs.
 - Regulators required post-demolition characterization sampling prior to covering.

▼Post-demolition sampling:

- Composite sampling of foundation top surfaces
 >9-point composites over either 900 ft² or 1,800 ft² grids
 >Samples collected from 0.5-inch depth
- Discrete sampling of foundation vertical edges
 Sample locations every 100 ft
 - Two sample depths per location: 1/8-inch depth and 1/8- to ¾-inch depth
 - Soil samples adjacent to vertical sample locations



- Total of 600 samples collected and 350 samples analyzed.
- ▼Samples compared to the approved cleanup level of 10 ppm for PCBs.
 - Building 104, 105, 106 plus all utilidors were <10 ppm.
 - Building 103 two edge samples >10 ppm.
 - Buildings 101 and 102 had surface samples >10 ppm and >50 ppm.


Building 102

			_				68	13	_		_	
24	26	31	30	49	50	59	11	9	7	5	з	1
25	27	28	29	48	51	58	12	10	8	6	4	2
32	37 	41	42	47 - Remediation	52	57	63	22	20	18	16	14
33	36	40 cc053 215 mg/kg	43	Areas 1 and 2 cc012 & cc014 1.38 & 0.0046 J mg/ 46	kg 53	56	62	23	21	19	17	15
34	35	39	44	45	54	60	61	64	65	66	67	73
	38			50		70				72		
						CC110 14 mg/kg	69	71				

36

Building 103

0 5 10 20

37

Site Closure

- The second se
 - B101 and B102 sample grids >10 ppm covered with plastic, slabs covered with soil, and grids >10 ppm marked with surveying flags for follow-on remediation.
 - B103 slab covered with soil and two edge sample locations marked with surveying flags for follow-on remediation.
 - B104, B105, B106, U645 slabs covered with soil.
 - All covers are temporary, final cover design and implementation to be completed under separate contract.

Site Closure

Questions?

