Methodology and Lessons Learned Conducting In-Situ Bioremediation Using an Emulsified Vegetable Oil

Jeff Rackow & Tom Titus EPAZ Conference March 4, 2020

- ADEQ Conducted In-Situ Bioremediation Injections at the 7th Avenue & Bethany Home Road WQARF Site in Phoenix, AZ
- Presentation Will Discuss:
 - Project Background
 - Project Technology & Design
 - Project Implementation
 - Performance Monitoring
 - Conclusions & Lessons Learned

Project Background

Site Location Map

- Groundwater Impacted with Concentrations of Tetrachloroethene (PCE) Above the Aquifer Water Quality Standard (AWQS) of 5 Parts Per Billion (ppb)
- Source of Contamination is Two Former Dry Cleaners
- Groundwater Is Current Source of Irrigation
 Water and Future Source of Drinking Water

PCE Groundwater Concentrations (4/19)

Water Supply Well

- Shallow Monitoring
 Well (70 to 110 ft bgs)
- Deep Monitoring Well (175 to 225 ft bgs)
- Concentration
 Contour (5 ppb)

<u>April 2019</u> PCE = <0.5 to 1,100 ppb Depth to GW = 85 to 95 ft bgs Flow Direction = North

Site Detail Map

Project Technology and Design

Reductive Dechlorination

General Process:

- Carbon Substrate Addition (Food & Hydrogen) "Electron Donor"
- Degradation/Fermentation Creates Anaerobic Conditions
- Specialized Anerobic Bacteria (DHCs) Replace Cl with H
- Chlorinated Ethenes Act as "Electron Acceptors"
- Competition: Other "Electron Acceptors" (CO₂, SO₄, Fe, Mn, NO₃, O₂)
- DHC Bacteria Added if Necessary "Bioaugmentation"

Injection Design

Injection Well Vertical Interval (ft)	Target ROI (ft)	Assumed Mobile Porosity (%)	1 Pore Volume (gal)	Target Injection Pore Vol (%)	Injection Vol per Well @ 100% PV
ft	ft	%	gal	%	gal
15	15	25.0%	19,827	100%	19,827
screen interval length	based on 30-ft spacing	based on Arcadis Pilot Study		based on Arcadis Pilot Study	
# of screens	16	each	Recommended EO	S Remediation Product	Amounts
EVO concentration	2%	%	EOS Pro	27 totes	7087.5 gals
Water requirement @ 100% Pore Vol ¹	310,145	gal	BAC-9 (concentrated)	152 Liters	40 gals
EOS Pro Vol	7,088	gal			
BAC-9 (concentrated) Vol	152	liters			
BAC-9 (concentrated) Vol	40.2	gals			
EOS Pro per well	443	gal/well			
Hydrogen per well	895	lbs H ₂ /well			
Fluid per well @ 100% Pore Vol	19,827	gal/well			
¹ Mix water Vol = 100% of Pore Vol minus E	OS Pro Vol	ALL BELOW ASSU	MES 100% OF PORE	VOLUME REQUIREMEN	т
	EVO Concentration	Mix Water per	EOS Pro per Well	Total Fluid per Well	Total Fluid for 16
Water to EOS Pro Oil Ratio	(%)	Well (gal) ^[1]	(gal)	(gal)	Wells (gal)
50:1	2%	19,384	443	19,827	317,232

be used as source water for hydraulic control and to enchance distribution of ERD injectants between injection wells.

Project Implementation

Injection Well Diagram

IW Screen Intervals:

- 85-100 ft bgs
- 107-122 ft bgs

Lithology:

- Sandy clay
- Sandy Silt
- Some silty sand

Hydraulic Conductivity:

K = 25 to 75 ft/day

Groundwater Velocity:

V = 0.35 to 1.05 ft/day

1 Year Travel Time:

~125 to 380 ft/yr

Source Area Detail Map

Injection Well (85 to 100 and 107 to 122 ft bgs) – 15 Foot ROI

Shallow Monitoring Well (70 to 110 ft bgs)

Deep Monitoring Well (175 to 225 ft bgs)

- Step 1 = Extract Site Groundwater, Treat for VOCs, Make Anoxic, and Store in Frac Tanks
- Step 2 = Prepare Batch Injection Fluid
 - Meter Anoxic Water to Mix Tanks
 - Meter EVO, DHC, & B12 to Mix Tanks
- Step 3 = Injection via Manifold
 - Phase 1 = Even Wells
 - Phase 2 = Odd Wells
- Step 4 = Performance Monitoring

Simplified Process Flow Diagram

Equipment Set-Up

Mix Tanks & Injection Manifold

1,120 oz

345

B12

6 oz

Injection Manifold

Transfer Pump, Feed Auger & Hoses

Bioaugmentation

DHC Dosage DHC @ 110 mL/Batch

Performance Monitoring

Sampling Plan

Parameter	Purpose	Sample Schedule	
Volatile Organic Compounds	Contaminant Reduction	<u>Pre-Injection</u> Baseline <u>Post Injection</u> 30 Days	
Iron, Manganese, Nitrate, Sulfate, Dissolved Oxygen, & Oxidation Reduction Potential	Reducing Conditions		
Total Organic Carbon	Radius of Influence & Amendment Duration	60 Days 120 Days 6 Months 12 Months 18 Months	
Methane, Ethene, & Ethane	Full Dechlorination		
рН	Toxicity for Bacteria	24 Months	
DHC & Functional Groups	Bacteria Concentration		

Performance Well Network

Injection Well

Deep Monitoring Well

*Performance Monitoring Wells Have **BOLD** Outline

PCE Concentration Trend

MW-04 – VOC Concentration Trend

TOC Concentration Trend

Performance Monitoring Summary

Component	MW-04	MW-22S	MW-23S
Location	Down-Gradient	Down-Gradient	Down-Gradient
Distance	17 feet	20 feet	50 feet
PCE Trend	1,700 to <2 ppb	72 to 4.5 ppb	79 to 110 ppb
Daughter Products	TCE, c1,2-DCE, & VC	TCE, c1,2-DCE, & VC	TCE & c1,2-DCE
Reducing Conditions	Yes	Yes	Slight
Amendment @ Well	Yes	Yes	No
DHC (cells/mL)	Good (>10E04)	Low (~7.0E-01)	OK (8.5E02)
pH Range*	6.94 to 7.31	6.31 to 7.08	6.91 to 7.25

*pH Drop Observed Injection Wells From Background (~6.8) to Low (4.53 to 5.0)

Conclusions & Lessons Learned

- PCE Concentrations Reduced in Shallow Zone Monitoring Wells
- Reducing Environment Established
- ROI = 20 feet
- Full Dechlorination at MW-04

- Long Field Duration (Oct 22 to Nov 20, 2018)
- Low Injection Flow Rates (<1.5 gpm) at Some Injection Wells
- Amendment Observed in Injection Well Casing = Some Amendment Not Injected into Formation
- High TOC at Injection Wells and Low TOC at Monitoring Wells
- Low pH (4.53 to 5.0) Observed in Injection Wells = Bad for DHC

Lessons Learned / Optimization

- Redevelop Injection Wells Prior To Conducting Injection Event
- Modify Injection Method = 25% Envelope; 65% EVO, DHC, Etc.; and 10% Chase Water <u>vs</u> 99% Fluid and <1% Chase Water
- Consider Pore Volume Target of 50% to 75% vs 100%
- Consider a Soluble Amendment (Corn Syrup or Molasses) or Modify EVO Recipe with Greater % Soluble Components
- Re-evaluate Buffer Amount / Supplemental Buffer Injection

Questions?

DITAT DEUS

Contact Information

Jeff Rackow, PE @ Rackow.Jeff@azdeq.gov Tom Titus @ Titus.Thomas@azdeq.gov