
REMEDIAL INVESTIGATIONS AND CLEAN-UP MADE EASY UTILIZING XRF TECHNOLOGY

Warner W. Vaughan & Gregory J. Dozer R.G.

Historically, soil remedial investigations and cleanup activities have required significant waiting periods and a lot of experience based guesswork when determining if remedial excavation activities have achieved the desired depth and result.

Even with today's rapid turn-around timeframes for analytical results, excavation zones may be open for (2) two to (5) five days before post-remediation cleanup verification analytical results are available. During the interim time, excavations may be left open presenting a physical hazard, or the excavation zone may be backfilled presenting a potential for duplicating work re-excavating due to unanticipated analytical hits.

In either case, re-mobilization costs are a given. Adams and Wendt has recently conducted (3) three projects using XRF technologies to screen the extent of impacts during remedial activities for metal contaminated sites as well as Leaking Underground Storage Tank sites. These screening techniques have greatly simplified the cleanup process.

Bad News for Bagdad: Copper Concentrate Spill Bagdad, AZ

- May of 2019, a semi truck loaded with 20 tons of copper concentrate crashed, releasing the finely-grained concentrate onto the roadside and adjacent drainage.
- Copper concentrate was released in an environmentally sensitive area.
- The release occurred north of the Santa Maria River, that drains into Alamo Lake.
- Alamo Lake just so happens to designated as a Cat 5 impaired water system. Big Oops!

Big Problem in Bylas: Copper Concentrate Spill Bylas, AZ

- In October of 2019 a haul truck carrying 30 tons of copper concentrate crashed, releasing the concentrate on the roadside and in a railroad easement.
- Due to the consistency and characteristics of the concentrate, prompt cleanup was necessary.
- Basically, we did not have time to wait for the lab to produce results. A real-time method was required to characterize the extent of the copper contaminated soil.
- XRF to the rescue!

Metal Plating Mayhem: Metal Plating Facility Phoenix, AZ

In June of 2015, a metal plating facility caught fire and was extinguished by copious amounts of water from the local fire department, despite the obvious placards on the doors that illustrated the flammability, reactivity, and oxidation potential of the materials inside. The contaminated water impacted the soil below the concrete pad and the exterior portions of the building.

Procedure for Cleanup Using On-Site XRF Data & Evaluation

Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)

Task 2: Identify Key Indicator Chemicals of Concern

Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements

Task 4: Decide on Evaluative Method

- > Contrastive Evaluation
- Statistical Evaluation
- Task 5: Implement Cleanup
 - ≻ Excavate

> Regular XRF Readings to Determine if DQOs have been met.

Where to Start? Let's Get Some Background.

	Cu	May 24, 20 Concentrat	19 e Spill						
Mil	epost 158, I				DL C		ch cara	6	7. 6
Sample # Description	Ag Conc (PPM)	As Conc (PPM)	Cu Conc (PPM)	Mo Conc (PPM)	Pb Conc (PPM)	S Conc (PPM)	Sb Conc (PPM)	Se Conc (PPM)	Zn Conc (PPM)
AZ Appendix A SRL Residential Non-Carcinogen (PPM)	390.0	10.0	3100.0	390.0	400.0	NE	31.0	390.0	23000.0
ADEQ Minimum GPLs for Metals (PPM)	NE	290.0	NE	NE	290.0	NE	35.0	290.0	23000.0 NE
1 Background	0	2	1007	0	19	5689	0	0	31
2 Background	0	2	1007	0	19	5689	0	0	31
3 Background	0	0	24	0	67	1562	0	0	20
4 Background	0	0	22	0	33	726	0	0	34
8 Background	0	0	43	0	33	884	0	0	26
9 Background	0	0	242	0	20	1620	0	0	34
10 Background	0	4	272	0	31	1658	0	0	64
11 Background	0	4	16	0	22	623	0	0	53
12 Background	0	0	18	0	47	1030	0	0	28
13 Background	0	0	13	0	26	563	0	0	38
14 Background	0	0	53	0	35	940	0	0	45
15 Background	0	0	33	0	34	512	0	0	72
16 Background	0	0	40	0	24	882	0	0	41
17 Background	0	0	41	0	35	938	0	0	46
18 Background	0	0	66	0	34	866	0	0	95
19 Background	0	0	1015	0	20	4750	0	0	34
21 Background	0	6	128	0	28	974	0	0	91

BACKGROUND

Procedure for Cleanup Using On-Site XRF Data & Evaluation

Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)

Task 2: Identify Key Indicator Chemicals of Concern

Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements

Task 4: Decide on Evaluative Method

- Contrastive Evaluation
- Statistical Evaluation
- Task 5: Implement Cleanup
 - Excavate

Regular XRF Readings to Determine if DQOs have been met.

Impacted Zone Readings

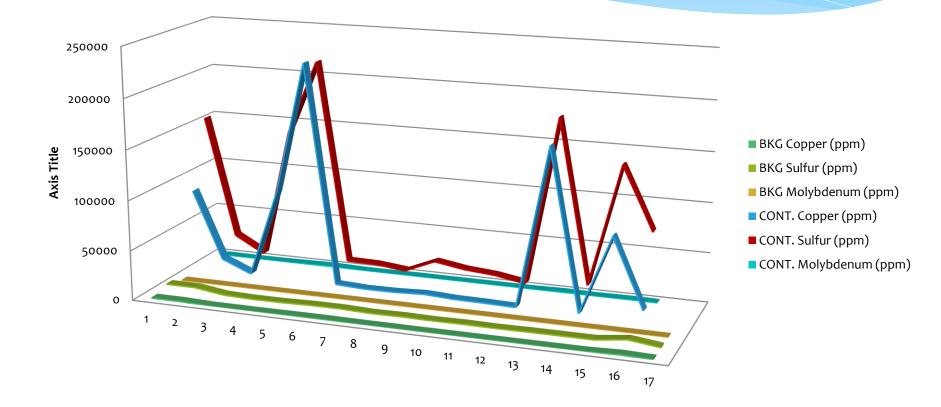
Table 2

Summary of Remediation and Cleanup Verification XRF Data - Key Metal Indicators

May 31, 2019

Cu Concentrate Spill

Milepost 158, Highway 97, Bagdad, Arizona


IVI	iepost 156, i	ingitway 57	, Daguau, A	1120114					
	Ag Conc	As Conc	Cu Conc	Mo Conc	Pb Conc	S Conc	Sb Conc	Se Conc	Zn Conc
nple # Description	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)
AZ Appendix A SRL Residential Non-Carcinogen (PPM)	390.0	10.0	3100.0	390.0	400.0	NE	31.0	390.0	23000.0
ADEQ Minimum GPLs for Metals (PPM)	NE	290.0	NE	NE	290.0	NE	35.0	290.0	NE
1 Retention Basin - During Remediation	0	0	2241	0	29	32959	0	0	79
2 Retention Basin - During Remediation	0	4	2741	0	35	22393	0	0	63
3 Retention Basin - During Remediation	0	8	7029	19	39	34022	0	2	108
4 Retention Basin - During Remediation	0	0	4735	0	35	58434	0	0	74
5 Retention Basin - During Remediation	0	4	1752	0	33	25470	0	0	62
6 Retention Basin - During Remediation	0	8	3774	11	27	24912	0	0	79
7 Retention Basin - During Remediation	0	0	3090	0	27	39040	0	0	95
8 Retention Basin - During Remediation	0	0	1081	0	41	15799	0	1	78
9 Retention Basin - During Remediation	0	5	3871	0	32	52755	0	0	54
10 Retention Basin - During Remediation	0	8	6209	0	32	79340	0	0	49
11 Retention Basin - During Remediation	0	6	4739	0	0	NA	0	0	793
12 Retention Basin - During Remediation	0	0	3128	0	24	NA	0	0	51
14 Retention Basin - During Remediation	0	0	2966	0	26	46259	0	0	35
16 Retention Basin - During Remediation	0	0	7304	0	39	87394	0	0	135
17 Retention Basin - During Remediation	0	0	1264	0	26	NA	0	0	89
18 Retention Basin - During Remediation	0	0	3281	0	33	46101	0	0	98
19 Retention Basin - During Remediation	0	0	912	0	34	13498	0	0	127
20 Retention Basin - During Remediation	0	0	1763	0	24	25207	0	0	51
21 Retention Basin - During Remediation	0	9	1700	0	35	23214	0	0	77
22 Retention Basin - During Remediation	0	6	1513	0	28	15164	0	0	102

Identify Key Indicators

IDENTIFICATION OF KEY INDICATOR COCs								
Background				Contaminated Zone				
Copper	Sulfide	Molybdenum		Copper	Sulfide	Molybdenum		
1007	5689	0		85705	154768	313		
1007	5689	0		17089	33767	40		
24	1562	0		4764	17341	0		
22	726	0		93274	147579	380		
43	884	0		224689	220394	827		
242	1620	0		3842	19295	0		
272	1658	0		2348	18721	0		
16	623	0		2633	15471	102		
18	1030	0		3948	28233	6		
13	563	0		2369	23408	0		
53	940	0		2023	20960	0		
33	512	0		1315	15818	0		
40	882	0		162659	183403	507		
41	938	0		2194	20781	0		
66	866	0		81664	142661	299		
1015	4750	0		12160	80070	15		
128	974	0						

Identify Key Indicators

Background v. Impact Zone Concentrations of Key Indicator Compounds

Procedure for Cleanup Using On-Site XRF Data & Evaluation

Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)

Task 2: Identify Key Indicator Chemicals of Concern

Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements

Task 4: Decide on Evaluative Method

Contrastive Evaluation

Statistical Evaluation

Task 5: Implement Cleanup

✤ Excavate

Regular XRF Readings to Determine if DQOs have been met.

DQOs, Cleanup Goals and QA Evaluation

Regulatory Limits (Arizona)

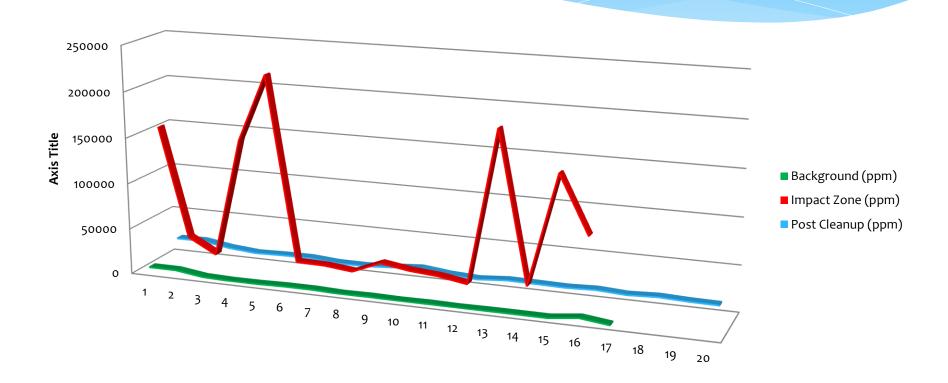
- Residential Soil Remediation Levels (rSRLs)
- Non-Residential Soil Remediation Levels (nr-SRLs)
- Groundwater Protection Levels (GPLs)
- Background Concentrations
 - Site Specific Targets for Background
- Other Risk Based Limits
- What Quality Assurance Checks are Needed
 - Verification Samples from Fixed Based Laboratory

Procedure for Cleanup Using On-Site XRF Data & Evaluation

Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)

- Task 2: Identify Key Indicator Chemicals of Concern
- Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements

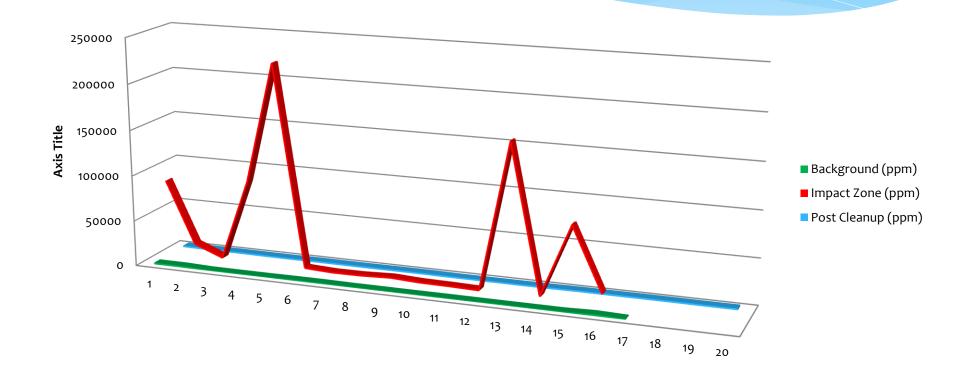
Task 4: Decide on Evaluative Methods


Contrastive Evaluation

- Statistical Evaluation
- Task 5: Implement Cleanup
 - ➤ Excavate
 - > Regular XRF Readings to Determine if DQOs have been met.

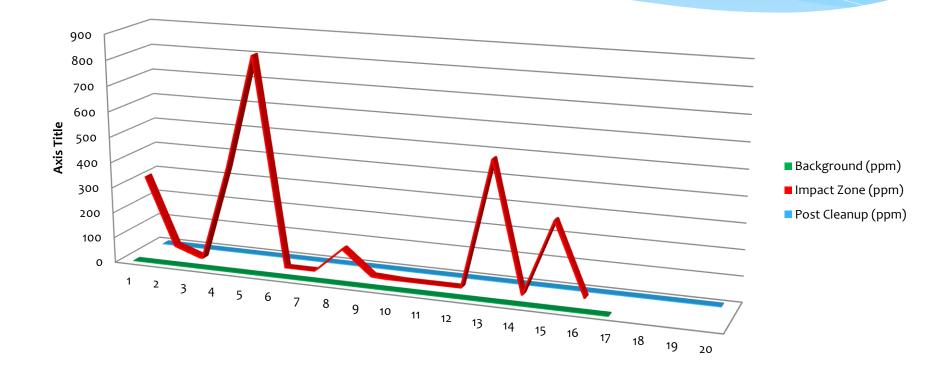
Contrastive Data Evaluation

Background v. Impacted v. Post Cleanup


SULFUR

Contrastive Data Evaluation

Background v. Impacted v. Post Cleanup


COPPER

Contrastive Data Evaluation

Background v Impacted v Post Cleanup

MOLYBDENUM

Procedure for Cleanup Using On-Site XRF Data & Evaluation

Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)

- Task 2: Identify Key Indicator Chemicals of Concern
- Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements

Task 4: Decide on Evaluative Method

- Contrastive Evaluation
- Statistical Evaluation
- Task 5: Implement Cleanup
 - > Excavate
 - > Regular XRF Readings to Determine if DQOs have been met.

Statistical Analysis

ProUCL Statistical Software

- > Developed by EPA to enable evaluation of data sets
- Simple and easy to use
- Several statistical methods and graphical tools
- Trend analyses
- > Evaluation for 95% confidence level for data sets
- > Needs multiple data points that XRF On-site provides

https://www.epa.gov/land-research/proucl-software

Statistical Analysis for Background

-	A B C	D E	F tistics for Lin	G H I J K censored Full Data Sets	L
1		Gamma OCL Sta	austics for Un	censored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation	ProUCL 5.112/23/2019 1	11:53:30 AM		
5	From File	UCLs.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10	Dealers and Deadlers				
11	Background Readings				
12			0		
13			General Sta		
14	lotal	Number of Observations	36	Number of Distinct Observations	32
15	1			Number of Missing Observations	0
16		Minimum	35	Mean	117.9
17		Maximum	358	Median	103
18		SD	74.96	SD of logged Data	0.58
19		Coefficient of Variation	0.636	Skewness	1.493
20			0		
21			Gamma GC		
22		A-D Test Statistic 5% A-D Critical Value	0.425	Anderson-Darling Gamma GOF Test	
23		K-S Test Statistic	0.129	Data appear Gamma Distributed at 5% Significance Lo	evel
24		5% K-S Critical Value	0.129	Kolmogorov-Smirnov Gamma GOF Test	
25	-			Data appear Gamma Distributed at 5% Significance L d at 5% Significance Level	evei
26		Data appear Gam		a at 5% Significance Lever	
27			Gamma Sta	stietice	
28		k hat (MLE)	3.071	k star (bias corrected MLE)	2.83
29		Theta hat (MLE)	38.39	Theta star (bias corrected MLE)	41,61
30		nu hat (MLE)	221.1	nu star (bias corrected)	204
31	MI	E Mean (bias corrected)	117.9	MLE Sd (bias corrected)	204
32		Le Mean (bias confected)	117.5		172
33	Adius	ted Level of Significance	0.0428	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	170.6
34	Aujus	as core of orginicative	5.0420	Aujusteu om Square value	170.0
35		Ace	ming Gamm	Distribution	
36	95% Approximate Gamma		139.9	95% Adjusted Gamma UCL (use when n<50)	141
37				concregence canning OOL (use wright insol)	
38		,	Suggested U	a to Use	
39 40	959	% Adjusted Gamma UCL	141		
40		of the second second second second			
41	Note: Suggestions repardin	o the selection of a 95%.	UCL are provi	ded to help the user to select the most appropriate 95% U	ICI
-46		•	-	ize, data distribution, and skewness.	
42	110				
43	These recommendations a	are based upon the result	s of the simul	ation studies summarized in Singh, Maichle, and Lee (200	1651
43 44 45				ation studies summarized in Singh, Maichle, and Lee (200 for additional insight the user may want to consult a statis	

Procedure for Cleanup Using On-Site XRF Data & Evaluation

- Task 1: Determine Background Readings and Impact Zone readings (20 or more is best)
- Task 2: Identify Key Indicator Chemicals of Concern
- Task 3: Decide on Data Quality Objectives (DQOs), Cleanup Goals and Quality Assurance (QA) Requirements
- Task 4: Decide on Evaluative Method
 - Contrastive Evaluation
 - > Statistical Evaluation
- Task 5: Implement Cleanup
 - Excavate
 - > Regular XRF Readings to Determine if DQOs have been met.

Reading While Cleaning

Other Applications: Tetraethyl Lead Contamination Associated with LUSTs

Other Applications: Tetraethyl Lead Contamination

Other Applications: Tetraethyl Lead Contamination

Lessons Learned for TEL Sites

- XRF systems are easy to use but detection limits are above cleanup levels.
- Good at identifying significant lead contaminated soil.
- Opportunity to evaluate numerous sample locations instead of guessing and waiting for results from laboratory.
- > Needs to be (1) one of multiple screening tools on-site.
- Should not be the only tool used until detection capability is lower.

CONCLUSIONS

PROs

- Quick means of screening soil to assist in determining when excavation post remediation samples are appropriate.
- Sample reading time is 1 to 2 minutes thus enabling the collection of numerous sample locations for cleanup determination and statistical analyses in real time on site.
- Reduced open excavation times and costs for remobilizations to project sites.
- Reduced analytical costs and down time for analysis.
- Numerous compounds may be evaluated (85+ for Olympus Model).
- Data may be downloaded to a laptop or tablet for evaluation at the site during excavation activities.

CONCLUSIONS

✤ CONs

- XRF testing is not an approved analytical method for cleanup verification sampling by the ADEQ.
- XRF detection levels are typically above residential soil remediation levels for TEL and some other compounds.
- Cost of rental of XRF gun is typically \$1,500 per week and purchase may be above 25K.
- XRF cannot be used as the sole means of evaluation for TEL at UST sites.
- Full evaluation of data is not provided on equipment, must download and evaluate data on computer or laptop.

WARNER VAUGHAN

GREGORY DOZER