ADEQ Experience with Remediation of PCE Plume Using *In Situ* Micro-Diffusion Ozone Treatment

East Central Phoenix – 24th Street and Grand Canal Phoenix, AZ

Date: February 26, 2024 Presenters: Mikel Morales

Clean Air, Safe Water, Healthy Land for Everyone

- Registry Placement Date: May 18, 2000
- Contaminant of Concern: Tetrachloroethene (PCE)
- Source of Contamination: Multiple former drycleaning facilities
- Current Impacted Media: Groundwater
- Early Response Action: Soil contamination remediated by soil vapor extraction (SVE) technology
- Potential Receptors: Salt River Project (SRP) water supply wells

Site Map

- 24th and Grand Canal Plume Contour
- Groundwater Flow Direction
 - Source Area Property
 - SRP Well

Conceptual Site Model

Source: Remedial Investigation, Figure 9 (Geosyntec, 2019)

- Pilot Study Objectives:
 - Assess remedy proposed in Feasibility Study
 - Map distribution of O_3 treatment
 - Evaluate cost-effectiveness
 - Remediate residual source area (~1/2-acre former dry cleaner site) below 5 micrograms per liter (ug/L) PCE

Ozone (O₃) Injection System Installation

- System installed February/March 2020
- Five injection wells equipped with 20-micron O₃ diffusers
- Two 23 lb/day O₃ generators (46 lbs/day max capacity)

O₃ Injection System Layout

O₃ Injection Well Design

Well Construction Details:

- 4-inch Schedule 80 PVC Casing
- 4-inch 0.020 Slotted
 Schedule 80 PVC Screen
- 5-foot Screen from ~120-125 feet below ground surface (bgs)

Ozone Sparge Process Flow Diagram

Ozone Process Stream

O₃ Injection System

O₃ Injection System (cont.)

O₃ Injection System (cont.)

- Map helium migration pathway and flow direction
- Helium fed to air compressor intake for distribution to injection well network
- Conducted prior to O₃ injection
- Test work scope:
 - Helium gas delivered to sparge wells at flow of
 - 1 liter per minute for ~72 hours
 - Screened system equipment, tubing, and well fittings using handheld helium gas detector (senses extremely low concentrations)
 - Screened headspace at 11 monitor wells
 - Screened cracks in onsite asphalt pavement

Helium Test Results

- Intermittent operation between April 2020 and June 2022
- Cycled O₃ injections on 5-minute intervals
- System operated for a total of 9,300 hours (388 days)
- Downtime due to ambient heat and geochemical issues (sediment accumulation in wells and on diffusers)
- System delivered 13,500 lbs of O₃ into the aquifer

O₃ Injection Operation Maintenance & Monitoring ADEQ

- Daily remote monitoring via telemetry
- Weekly site visits to monitor O₃ injection pressures and flow rates
- Monitoring wellheads for potential O₃ gas leaks
- As-needed trouble-shooting/repair upon system alarm notifications

- Groundwater:
 - Sampling/analyzing for VOCs and dissolved metals
 - Sampling for field Redox parameters (oxidative integration potential [ORP] dissolved oxygen [DO], conductivity, pH)
- Distribution of O₃ (zone of influence):
 - Field gas meter at wellheads (O_3 in headspace)
 - Colorimetric test strips (O₃ in groundwater)

Performance Monitoring Well Locations

Concentration Plots - 24AS-01

- Located ~12 feet from OS-3
- Baseline Concentration: 53 µg/L
- 95% reduction of PCE from start of pilot study
- PCE detected at concentration of 5.03 ug/L in September 2023

Concentration Plots – 24MW-10A

- Located ~935 feet down-gradient from nearest injection well
- Baseline Concentration: 23 µg/L
- PCE detected at concentration of 8.52 ug/L in September 2023

Historical PCE Concentration Plot

Lessons Learned

Extreme Heat

 Modified system operation schedule was needed during summer (shutdown system when outside temperatures exceeded 110 °F)

Lessons Learned

Well Siltation Issues/Solutions

Redeveloped by standard techniques at a relatively low cost

Lessons Learned

Fouling Issues / Solutions

- Screens clogged with black deposits (iron / manganese).
- Acid treated wells with muriatic acid to restore flow.

Ozone Diffuser Fouling – Iron and Manganese Deposits

Before Diffuser Cleaning

After Diffuser Cleaning

Some dissolved chromium was liberated proximal to select injection wells

Over long periods of time, ozone can oxidize metals such as chromium

Project Cost

Project Item	Cost
System Design	\$34,000
System Construction ¹	\$84,000
OS Well Installation ²	\$153,000
System O&M ³	\$437,000
Subtotal ⁴	\$708,000
Notes:	
1 - Utilized existing SVE infrastructure (fenced compound, power supply, etc.)	
2 - Five OS wells drilled via hollow stem auger	
3 - Includes rental cost for O_3 generator	
$A = DDAD$ is the disentent of C^{1} $2NA$ for AC is the objective	

4 - PRAP projected cost of \$1.2M for OS remedy

- PCE destruction occurred in close vicinity to treatment wells with evidence of treatment further downgradient (~250 feet)
- There is a concern for liberation of metals
- Technology did provide a feasible option for source area treatment
- Consideration should be given on remediation goals (e.g. How long does it take to achieve asymptotic levels? Operate system beyond asymptotic levels?)
- The costs were relatively high compared to the mass of PCE treated, but addressing the residual source area was an objective in an area where groundwater resources are highly valued

- Routine groundwater monitoring program*
 - Annual monitoring for VOCs and MNA parameters
 - Semiannual monitoring for VOCs at select wells
- Groundwater sampling for metals to assess postinjection conditions
- No further O₃ treatment needed

*Routine monitoring performed in accordance with groundwater monitoring frequency optimization schedule

Thank You! Questions?

Clean Air, Safe Water, Healthy Land for Everyone

ADEQ Project Manager

Mikel Morales

Morales.Mikel@azdeq.gov

602.771.4182

Geosyntec Senior Principal

Trevor Carlson, B.Sc.

tcarlson@geosyntec.com

657.331.5944

