Former Perryville Feed Store Leaking UST Site, Goodyear, AZ

Characterization/Remediation of Extensive Contamination within a Deep "Smear Zone"

Presented by

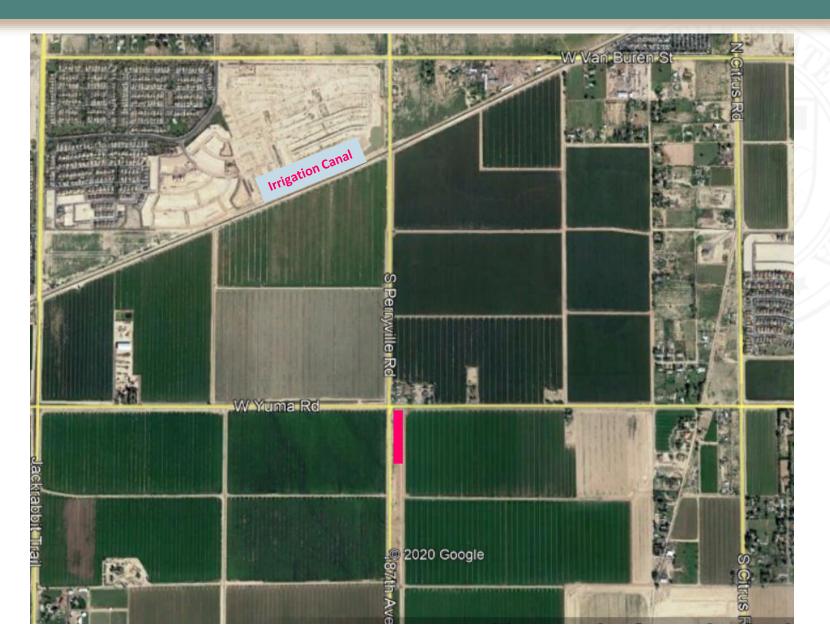
Jeff Rackow, PE

Clean Air, Safe Water, Healthy Land for Everyone

Presentation Topics

- Site Location
- Project Summary
- Objectives
- Background
- Irrigation Well and Vertical Flow
- Nature and Extent of Contamination
- Remediation Approach
- Pump-and-Treat (P&T)
- Soil Vapor Extraction (SVE)
- Treatment System Design and Photographs
- Remediation System Performance
- Results/Lessons Learned

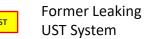
Site Location



Location:

- ~ 5 miles west of Phoenix Goodyear Airport
- 1.8 mile south of I-10

Former Perryville FS Property



Site Map

DITAT DEUS

4

- ADEQ is conducting GW investigation and remediation under its State Lead Leaking UST Program
- Extensive gasoline-related GW contamination (LNAPL & dissolvedphase) exists, including through ~150 ft thick "smear zone"
- "Smear zone" created by decades of pumping from deep, highcapacity irrigation well located ~200 feet east of Leaking UST zone
- LNAPL present in multiple wells (currently 5)
- Dissolved-phase benzene in GW currently up to 12,500 μ g/L
- Remediation is on-going using multiple methods

Objectives

- Continue GW remediation
- More fully characterize extent of onsite LNAPL plume
- Continue attempts to gain access offsite (west) to complete GW characterization
- Modify, enhance, optimize remediation based on results of supplemental characterization
- Further evaluate treated discharge alternative
- Reduce BTEX concentrations over time to acceptable riskbased levels

- Former agricultural supply store, retail gas & diesel [1940s-1991]
- Fuel release discovered during UST closure, holes in multiple tanks [July 1991]
- CSM: Fluctuating GW levels (~58 to ~ 175 ft bgs), resulting from nearby high-capacity/deep irrigation well pumping. "Smear Zone" created (submerged & residual NAPL) [1970s -2020]
- Initial SVE systems remove reported 98,690 lbs of VOCs (~15,183 gals gas); LNAPL recovery 800 gals [1996-2000]

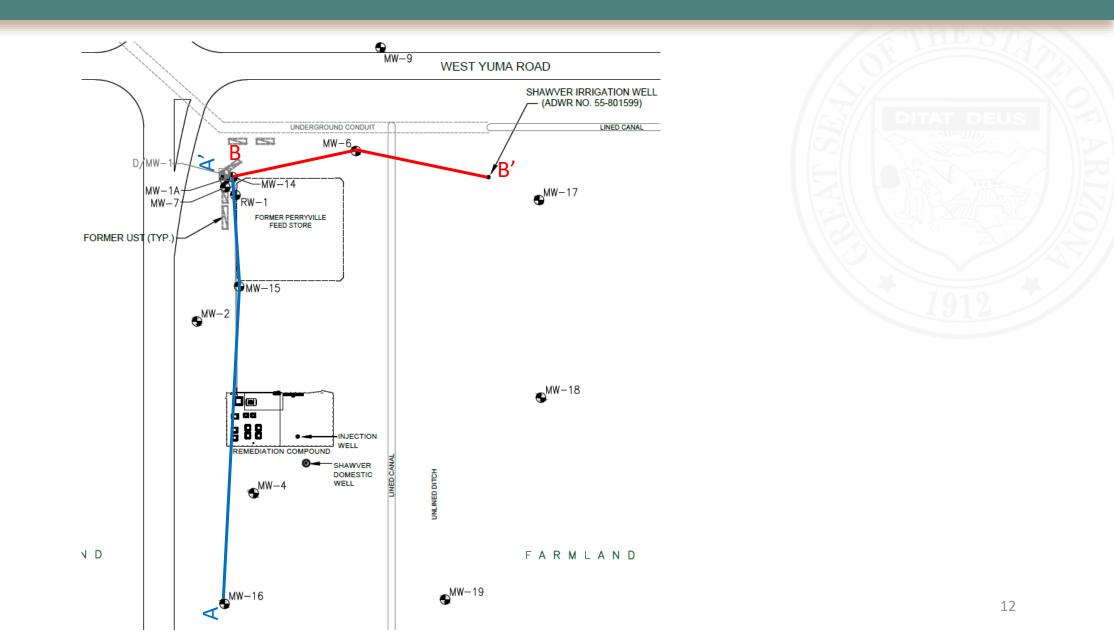
Background - cont...

- Vertical characterization with 5 deep borings/wells (~220 ft bgs). HydroPunch & PDB data reveals ~150 ft thick "smear zone" [2017-2018, 2023]
- Remedial Alternatives Analysis: AS/SVE, thermal, P&T with SVE. Ultimately, P&T with SVE and LNAPL recovery selected [2019-July 2020]
- High-capacity irrigation well shut-off and removed [June 2020]
- Full-network GW sampling performed for pre-remediation baseline. High VOCs present (LNAPL; dissolved benzene up to ~20,000 ug/L) [Aug 2020]
- P&T design/permit/construct/test is completed [~Aug 2020-Dec 2020]
- Official startup of P&T with O&M [Jan 2021]

- Official startup of SVE system [April 2022]
- P&T reinjection well (INJ-1) gradually loses infiltration capacity, can't effectively be rehabilitated [Jan 2021-Aug 2022]
- P&T discharge alternatives evaluated (e.g., connect to RID vs installing replacement IWs [April-June 2022]
- AZPDES permitting (application, issuance, modification) [July-Nov 2022]
- P&T system shut off after ~26M gals throughput [Sept 2022]. LNAPL recovery and SVE continue
- Replacement injection well (INJ-2) installed [July 2023]
- Extensive LNAPL (~12 ft thick) surprisingly detected in INJ-2 [Oct 2023]
- Plans developed to further characterize LNAPL plume using 4 new MWs [recent status]
- LNAPL recovery and SVE continue [current status]

Shawver Irrigation Well

- Located ~200 ft east of leaking UST zone
- Installed in Aug 1951 (ADWR record)
- Depth = 440 ft; casing diameter = 20 in (field measurements)
- Perforation (mills-knife cuts) interval 202 440 ft (video log)
- Pumping rate/capacity ~ 2,000 gpm. Reportedly operated from 1,000
 2,000 gpm over lifecycle
- Pump removed by land owner, Jan 10, 2020
- Well casing video logged, Jan 17, 2020
- Casing in poor condition; multiple breaches and corroded perforations


Downward Vertical Flow (2017)

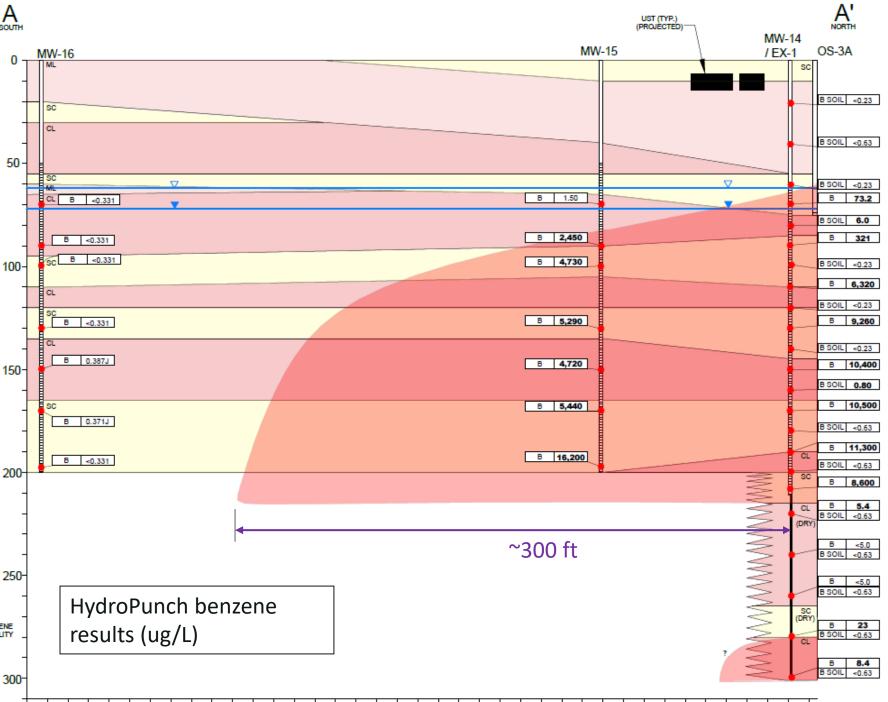
- Geophysical & spinner logging conducted on deep onsite wells MW-14 (source area) and MW-15 (nearby downgradient)
- Determination of average vertical flow velocity and net flow
- 0.25 0.5 gpm downward flow without irrigation well pumping
- 5 7 gpm downward flow when irrigation well pumped at ~1000 gpm
- Data confirmed irrigation well pumping had significant impact on vertical distribution of contamination in aquifer

Extent of Contamination

Cross Section A-A' (N/S)

STANDARDS (AWQS).

MW-16 SC CI **Depth to Water:** 50-DTW 2017 ~65 ft • DTW 2021 ~ 75 ft • CL B <0.331 DTW 2023 ~ 89 ft • B <0.331 2017-2023 DTW Decline ~ 24 ft • SC B <0.331 100-Deepest Recorded DTW ~ 175 • CL ft (ADWR 1954 to 1974) B <0.331 B 0.387J 150-SC B 0.371J B <0.331 υ 200-LEGEND WELL DESIGNATION MW-16 E BLANK CASING SCREEN INTERVAL SOIL BORING DESIGNATION 250-SOIL BORING HydroPunch benzene CLAY CL ML SILT E BENZENE results (ug/L) ER QUALITY SC SAND WITH CLAY OR WELL GRADED SAND ESTIMATED EXTENET OF DISSOLVED PHASE BENZENE ABOVE ADEQ ESTABLISHED ARIZONA WATER QUALITY

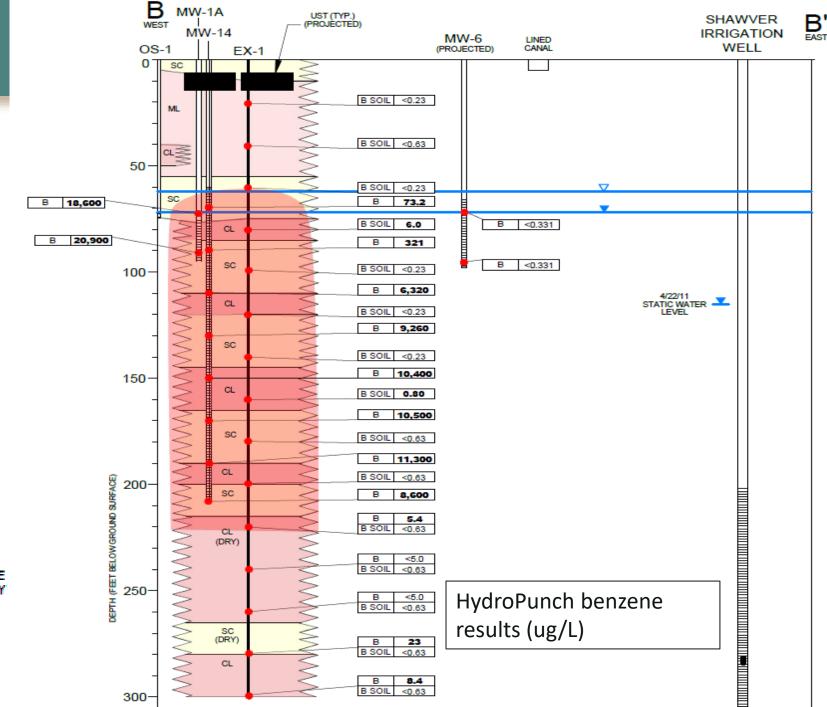

OL

50

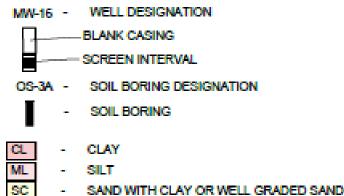
100

150

A

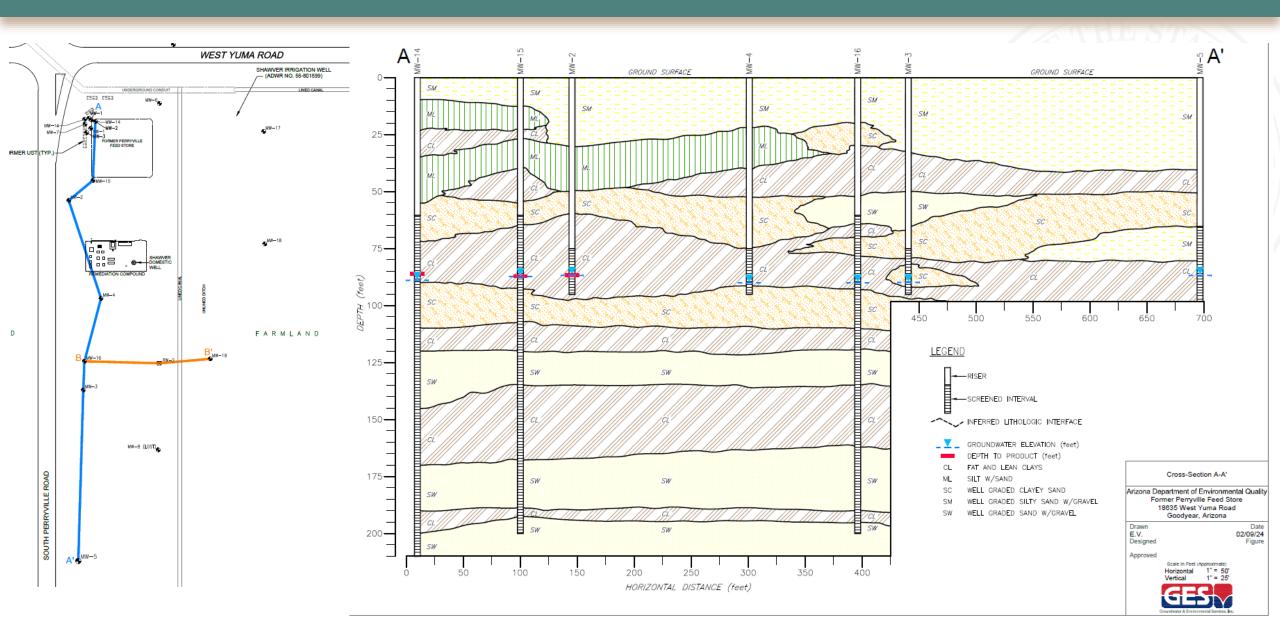

200

250

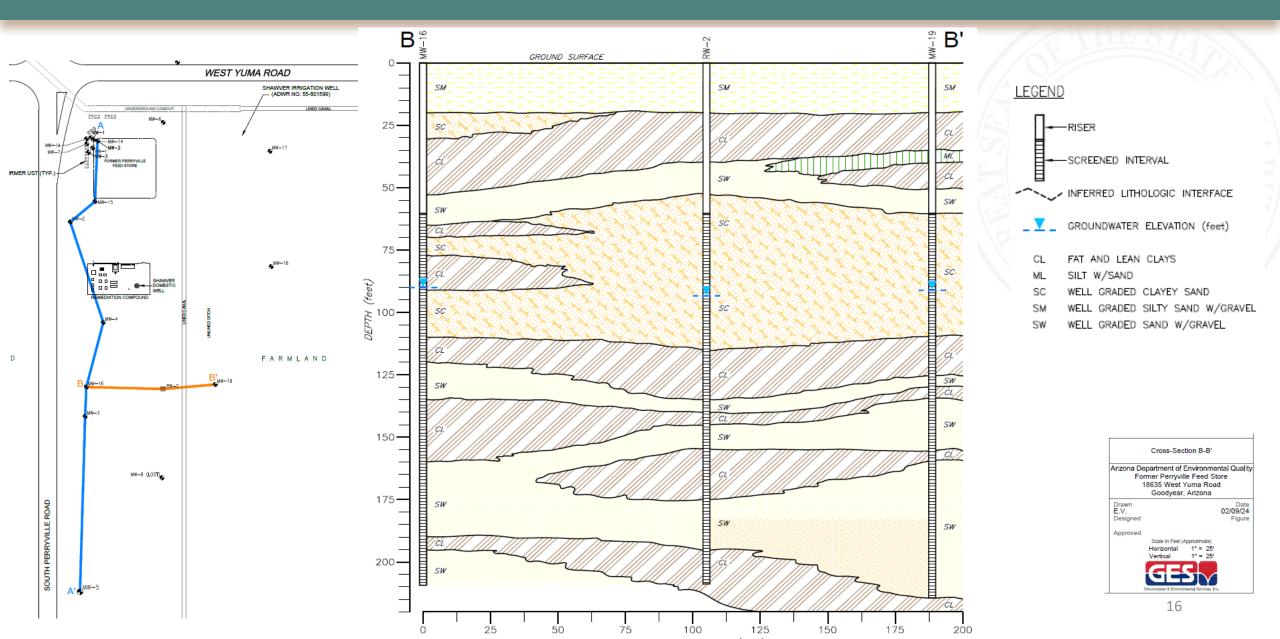

300

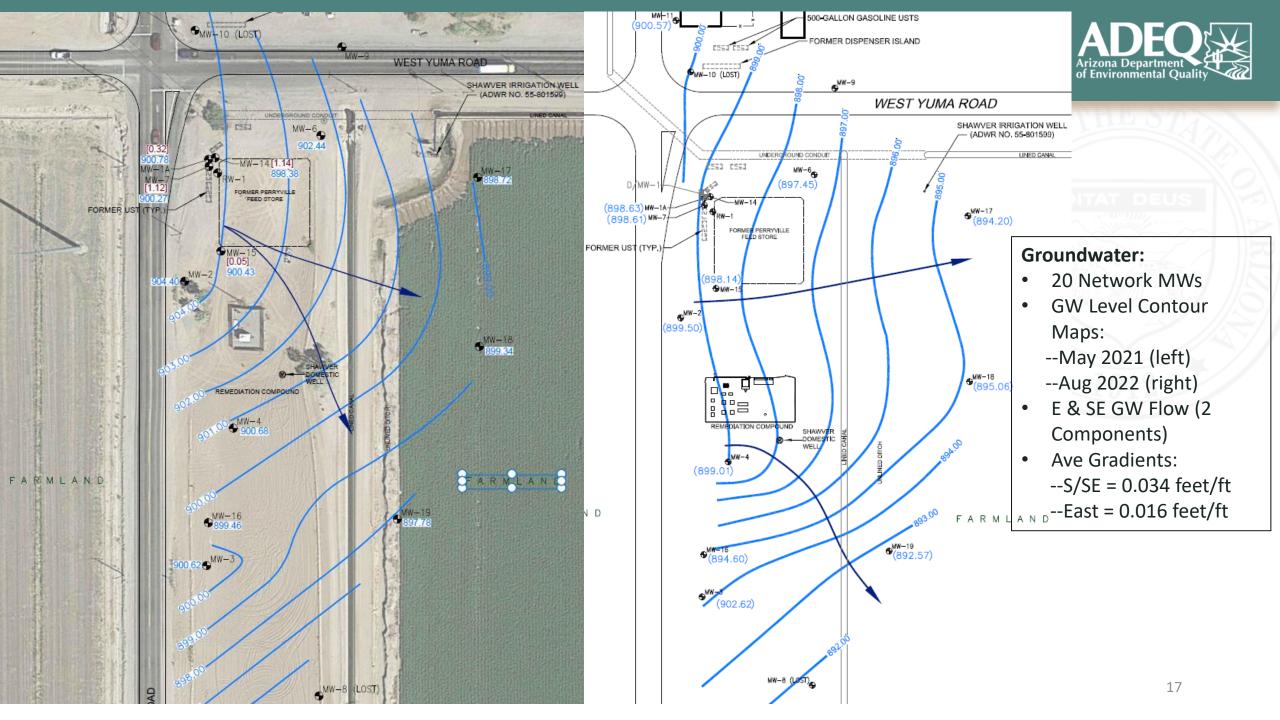
350

Cross Section B-B' Source Area (E/W)


LEGEND

ESTIMATED EXTENET OF DISSOLVED PHASE BENZENE ABOVE ADEQ ESTABLISHED ARIZONA WATER QUALITY STANDARDS (AWQS).


Geologic Cross-Section A-A' (N/S)



Geologic Cross-Section B-B' (E/W)



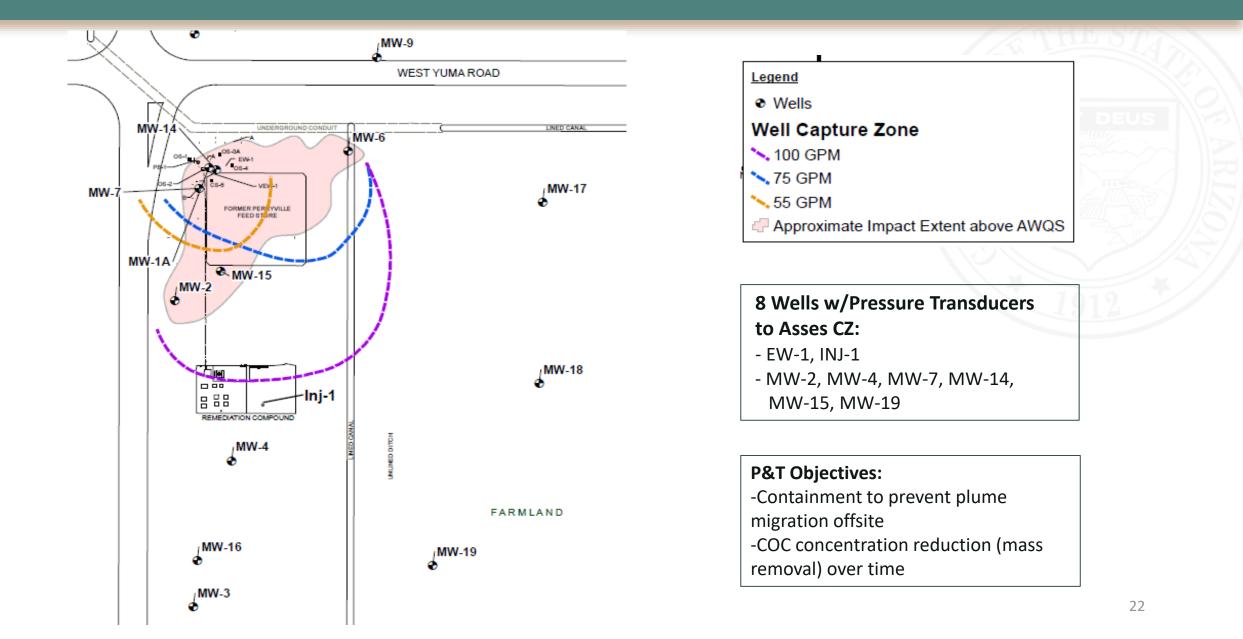
GW Analytical Data (Aug 2020 - Baseline)

GW Contamination at MW-15

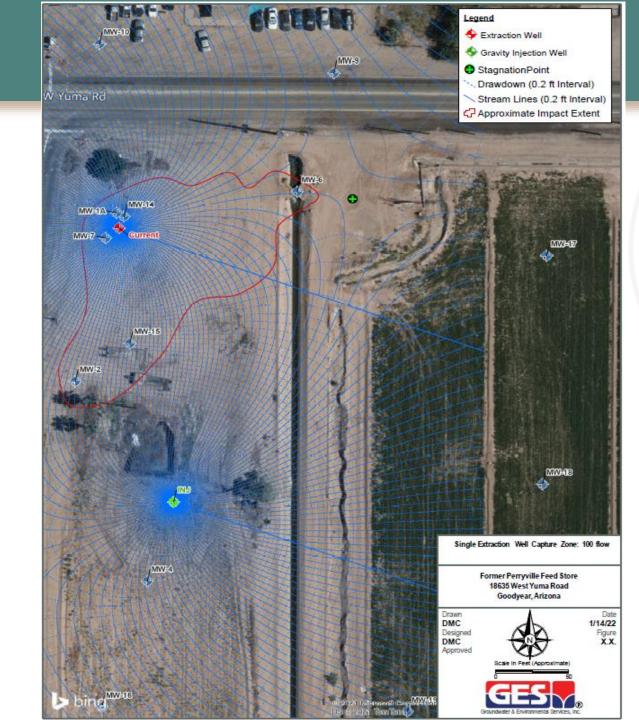
Well ID - Depth	Date	TOC (ft)	DTW (ft)	GWE (ft)	DTP (ft)	FPT (ft)	Benzene (µg/L)	Toluene (µg/L)	Ethyl-benzene (μg/L)	Total Xylenes (μg/L)	MTBE (µg/L)
ADEQ Aquifer W	Vater Quality	Standards (/	AWQS) (µg/L)				5.0	1,000	700	10,000	94
MW-15-70 ³	04/29/19	978.33	68.91	909.42	-	-	1.50	9.72	2.96	14.9	<0.367
MW-15-75	08/12/20	978.33	74.23	904.10	-	-	9,870	20,800	2,510	8,570	<100
MW-15-75	01/21/21	978.33	76.79	901.54	-	-	6,520	17,100	2,090	10,300	<250
MW-15-75	05/06/21	978.33	76.60	901.73	-	-	3,760	11,400	1,740	8,250	<250
MW-15-75	11/30/21	978.33	75.39	902.94	-	-	3,660	22,000	2,300	10,000	<100
MW-15-90 ³	12/18/17	978.33	66.56	911.77	-	-	10,600	14,400	1,570	7,510	<50
MW-15-90 ³	04/29/19	978.33	68.91	909.42	-	-	2,450	4,160	708	2,590	2.87
NOV 45 05	00/40/00	070.00	74.00	004.40			17.000				-50.0
MW-15-95	08/12/20	978.33	74.23	904.10	-	-	17,600	22,600	2,270	8,000	<50.0
MW-15-95 MW-15-95	01/21/21 05/06/21	978.33 978.33	76.79 76.60	901.54 901.73	-	-	13,300	24,500	1,930	9,540	<1000 <1000
MW-15-95	11/30/21	978.33	75.39	901.73	-	-	11,100 5,710	26,100 35,700	2,170 2,570	10,500 11,500	<250
MW-15-95 MW-15-95	12/28/23	978.33	87.32	902.94 891.01	87.17	0.15	4300	7800	1400	6300	<250 5.40
10100-10-90	12/20/23	910.33	01.32	091.01	07.17	0.15	4300	7000	1400	0300	5.40
MW-15-100 ³	12/18/17	978.33	66.56	911.77	-	-	9,580	12,800	1,440	6,670	<50
MW-15-100 ³	04/29/19	978.33	68.91	909.42	-	-	4,730	8,150	1,440	4,550	7.39
MW-15-115	08/12/20	978.33	74.23	904.10	-	-	20,300	26,100	1,860	7,720	<20.0
MW-15-115	01/21/21	978.33	76.79	901.54	-	-	12,600	20,800	1,670	8,370	<1000
MW-15-115	05/06/21	978.33	76.60	901.73	-	-	10,700	22,200	1,840	8,540	<1000
MW-15-115	11/30/21	978.33	75.39	902.94	-	-	4,980	31,400	2,100	9,120	<250
2	10//0//-	070.00	00.50								-50
MW-15-130 ³	12/18/17	978.33	66.56	911.77	-	-	7,380	9,240	840	4,200	<50
MW-15-130 ³	04/29/19	978.33	68.91	909.42	-	-	5,290	8,940	1,760	4,910	8.02

GW Contamination at MW-15 (cont...)

Well ID - Depth	Date	TOC (ft)	DTW (ft)	GWE (ft)	DTP (ft)	FPT (ft)	Benzene (µg/L)	Toluene (µg/L)	Ethyl-benzene 1 (µg/L)	Γotal Xylenes (μg/L)	MTBE (µg/L)
ADEQ Aquifer	Water Quality	/ Standards (/	AWQS) (µg/L)				5.0	1,000	700	10,000	94
MW-15-135	08/12/20	978.33	74.23	904.10	-	-	20,800	26,300	1,730	7,360	<50.0
MW-15-135	01/21/21	978.33	76.79	901.54	-	-	12,000	20,400	1,650	8,450	<1000
MW-15-135	05/06/21	978.33	76.60	901.73	-	-	10,300	22,100	1,730	8,570	<1000
MW-15-135	11/30/21	978.33	75.39	902.94	-	-	5,240	32,900	2,200	9,780	<250
							-,		_,		
MW-15-150 ³	12/18/17	978.33	66.56	911.77	-	-	7,130	8,740	809	3,690	16.2 ^J
MW-15-150 ³	04/29/19	978.33	68.91	909.42	-	-	4,720	7,970	1,480	4,520	7.25
									· · · · ·		
MW-15-155	08/12/20	978.33	74.23	904.10	-	-	18,900	24,000	1,690	6,820	<50.0
MW-15-155	01/21/21	978.33	76.79	901.54	-	-	14,500	22,400	1,900	9,780	<1000
MW-15-155	05/06/21	978.33	76.60	901.73	-	-	8,460	18,200	1,600	8,020	<1000
MW-15-155	11/30/21	978.33	75.39	902.94	-	-	4,450	27,800	1,870	8,120	<250
MW-15-155	12/28/23	978.33	87.32	891.01	87.17	0.15	1600	4700	1100	5900	<1.00
MW-15-170 ³	12/18/17	978.33	66.56	911.77	-	-	6,980	8,570	820	3,920	<50
MW-15-170 ³	04/29/19	978.33	68.91	909.42	-	-	5,440	9,030	1,730	4,990	10.1
MW-15-170	08/12/20	978.33	74.23	904.10	-	-	20,000	24,500	1,530	5,840	<50.0
MW-15-170	01/21/21	978.33	76.79	901.54	-	-	12,900	21,300	1,810	8,690	<1000
MW-15-170	05/06/21	978.33	76.60	901.73	-	-	9,340	21,800	1,600	8,020	<1000
MW-15-170	11/30/21	978.33	75.39	902.94	-	-	4,490	28,300	1,980	8,620	<200
MW-15-190	08/12/20	978.33	74.23	904.10	-	-	17,600	22,400	1,800	6,830	<50.0
MW-15-190	01/21/21	978.33	76.79	901.54	-	-	16,300	23,300	2,030	9,500	<1000
MW-15-190	05/06/21	978.33	76.60	901.73	-	-	9,590	23,600	1,850	8,280	<1000
MW-15-190	11/30/21	978.33	75.39	902.94	-	-	4,410	27,700	2,030	9,050	<200
MW-15-190	12/28/23	978.33	87.32	891.01	87.17	0.15	1800	8600	1600	8,200	<1.00

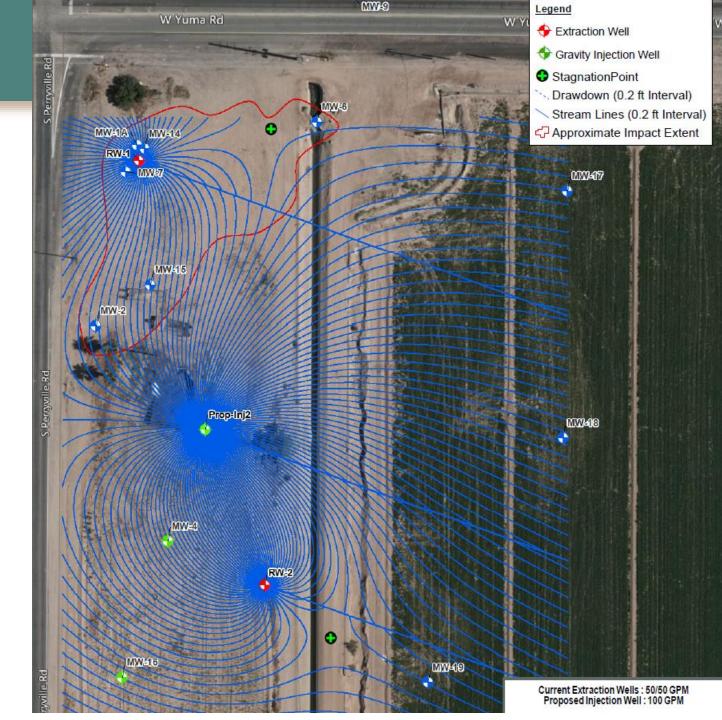

Remediation Approach

- GW remediation: 1) P&T to contain/control plume migration + deep contaminant flushing; 2) SVE to remove contaminant mass from upper portion of "smear zone"; 3) manual LNAPL recovery
- Why P&T? Impacted zone thickness renders other "traditional" remediation strategies (air sparging, ISCO, bio-injection) infeasible or impractical
- P&T addresses saturated ~150 ft thick "smear zone" (~70 220 ft bgs) characterized at source to at least MW-15 downgradient
- Reinjection of treated GW serves as hydraulic barrier against further plume migration
- GW drawdown exposes top of "smear zone" enabling SVE mass removal
- System is expandable (can add EWs & SVE wells, automate LNAPL recovery)

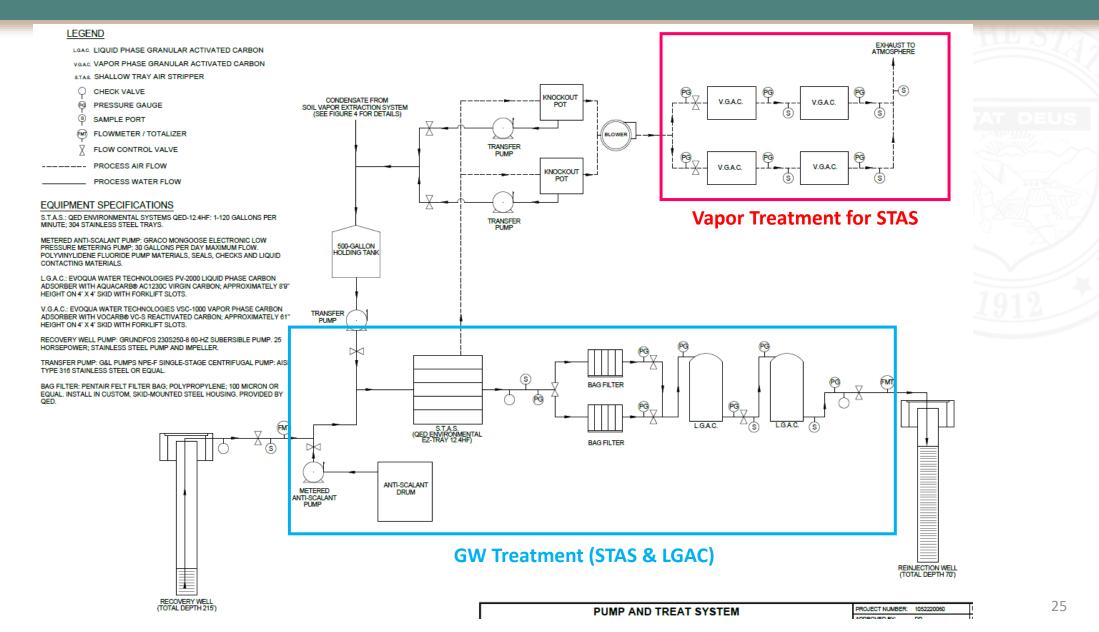

P&T: Source Area RW-1 Capture

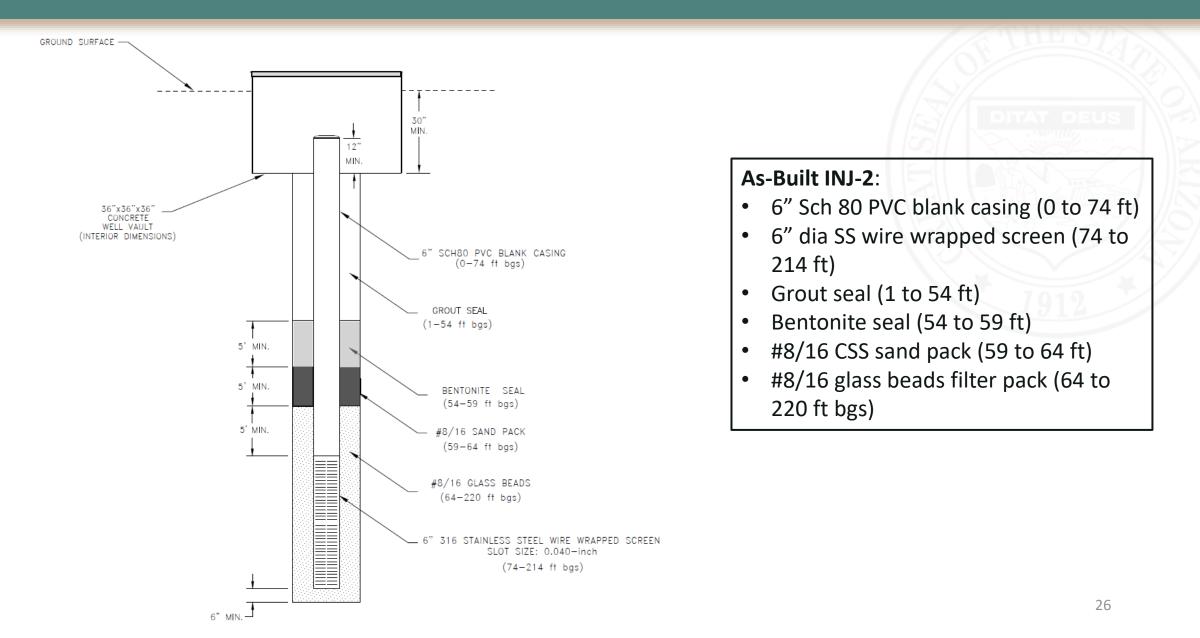
P&T: Capture Zone Simulation

• 100 GPM Pumping of RW-1



P&T: Capture Zone Simulation


 50/50 GPM Pumping of RW-1 and RW-2


P&T System Process Diagram

Reinjection Well INJ-2

27

Soil Vapor Extraction

- Three source area SVE wells; screen intervals:
 - --MW-1A: 75'-95'
 - --MW-7: 54'-94'
 - --MW-14: 60'-210'
- Nominal 250 cfm capacity Thermox unit; propane-fired
- Removes/volatilizes NAPL that's not manually recovered
- In combination with P&T and site declining water levels (~12' over the past 2 years), removes contaminant mass from upper portion of "smear zone"
- Observed remediation rates since start-up in April 2022:
 - -- 6.7 276 lbs/day TVH as GRO
 - --0.24 2.7 lbs/day benzene

Sediment Filters, Air Stripper, Process Pipe

P&T Shallow-Tray Air Stripper (STAS)

LGAC, VGAC Vessels & Discharge Stack

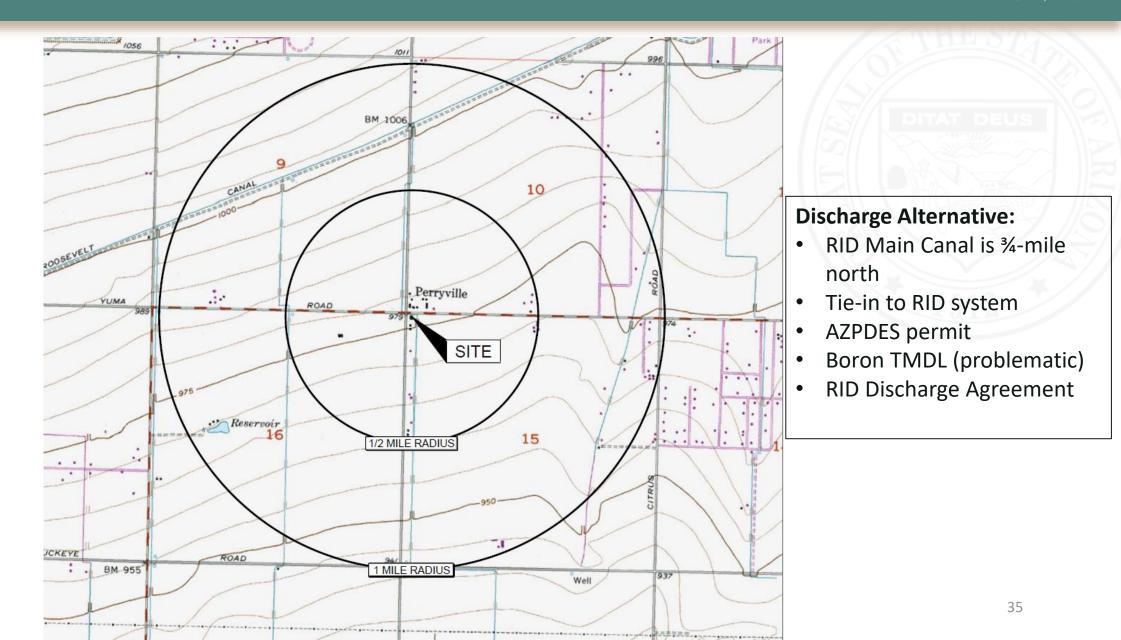
Reinjection Well Vault and Casing (INJ-1)

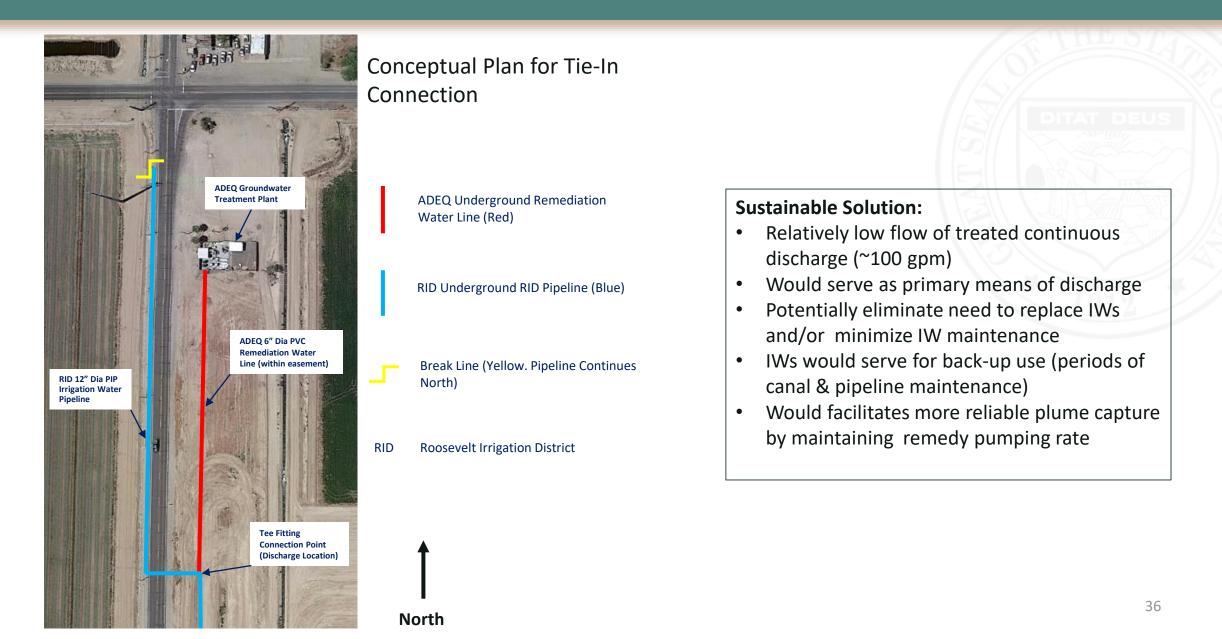
Reinjection Well Vault, Casing, and LNAPL (INJ-2)

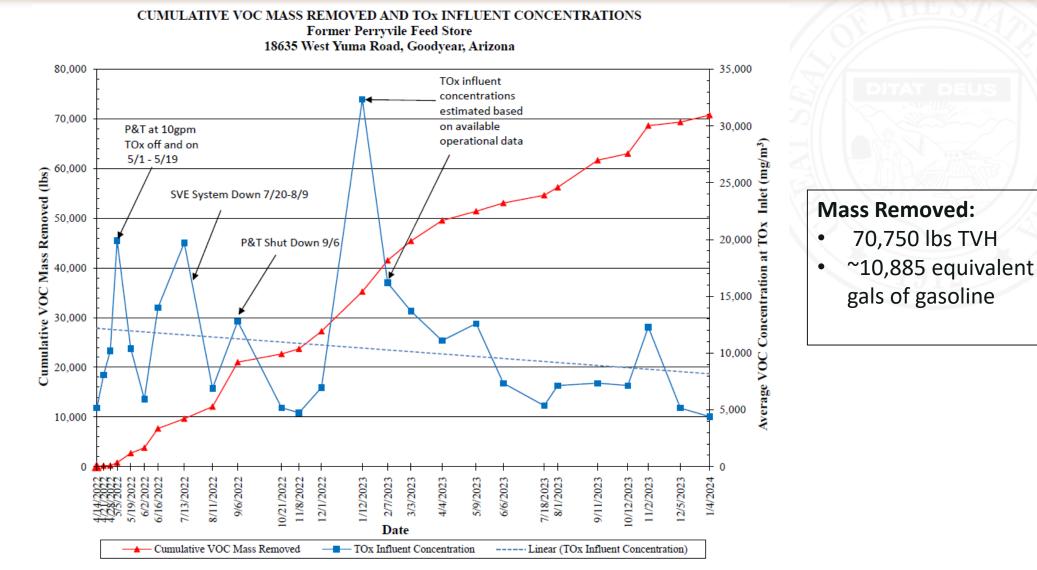
SVE/Oxidizer Unit

Soil Vapor Extraction (SVE) Thermal/Catalytic Oxidizer Unit:

- ADEQ SVEU General Air Permit
- 250 cfm nominal extraction capacity
- > 95% contaminant destruction efficiency
- Propane-fired
- Multiple fail-safes
- Operates with or without P&T


Treatment Plant (facing west)


Discharge Alternative: Roosevelt Irrigation District (RID)



Potential Connection to RID Pipeline

SVE Performance (Mid April 2022 – Early Jan 2024)

Form	ner Perryville Feed S	tore Site, Goodyea	ar, AZ	
Technology	Date Range	Amount (lbs)	Amount (gals)*	
SVE & LNAPL Recovery	Early to Mid - 1990s	103,890	15,983	
P&T	Jan 2021 - Sept 2022	2,905	447	
LNAPL Recovery	April 2022 - Dec 2023	3,263	502	
SVE	April 2022 - Dec 2023	70,753	10,885	
Totals		180,811	27,817	
Notes:				
lbs = pounds				
gals = gallons				
LNAPL = light non-aqueous p	ohase liquid (free-phase prod	uct)		
P&T = pump and treat				
SVE = soil vapor extraction				
*gasoline equivalent assume	s a fuel density of 6.5 lbs/gal			

Results/Lessons Learned

- Original injection well (INJ-1) improperly constructed; limited infiltration volume and could not be rehabilitated
- Surprises:
 - --LNAPL impact at INJ-2 despite no evidence during well development
 - --Insufficient LNAPL characterization

--INJ-2 location & design appears ideal for effective LNAPL recovery (287 gals recovered from Oct 2023 - Dec 2023)

--MW-19 dissolved phase impact (only 1 event, multiple depths, purpose for RW-2). No additional impact events above AWQS

- Naturally occurring boron levels will likely preclude discharge to RID (AZPDES concentration-based TMDL)
- Significant remediation so far accomplished; however, much more needed
- Expect the unexpected at this site!

Thanks to ADEQ State Lead Contractors

- ATC: Expanded site characterization (primarily MW installations/monitoring, aquifer testing, geophysical logging), partial remedial system design, P&T system construction management, reporting [2016- 2020]
- GES: P&T and SVE system start-up/O&M; installation of multiple treatment plant improvements, construction management, remediation performance monitoring, P&T capture zone modeling/ evaluation, RW and IW installations, aquifer testing, on-going GW monitoring, reporting, planning for supplemental LNAPL characterization [2020 - present]

Thank you!

- Questions?
- Comments?

Clean Air, Safe Water, Healthy Land for Everyone