New PM_{2.5} NAAQS Impacts in The Horizon for Arizona

EPAZ Conference - February 26, 2024 Camille Ponce

trinityconsultants.com

Trinity Consultants International Presence

Europe England, UK / Dublin, IE

Agenda

- 1. NAAQS Background and PM_{2.5} Rulemaking
- 2. Attainment/Nonattainment Designations
- 3. Permitting and Modeling Impacts Focus on Arizona

1. NAAQS Background and PM_{2.5} Rulemaking

Clean Air Act and PM_{2.5} NAAQS Background

- National Ambient Air Quality Standards (NAAQS) Threshold levels of air pollution
 - Established by the 1970 Clean Air Act (CAA) for six (6) criteria pollutants
 - Primary (main impacts to permitting) and secondary standards
- NAAQS Do Change EPA is required to review and revise, if necessary, every five years
 - EPA opened the $PM_{2.5}$ NAAQS review process in 2023

What is PM_{2.5}?

► Particulate Matter (PM) is a mixture of solid and liquid droplets

- ► Categories of PM with a NAAQS:
 - PM with an aerodynamic diameter \leq 10 µm (**PM**₁₀)
 - PM with an aerodynamic diameter $\leq 2.5 \ \mu m \ (PM_{2.5})$
- ▶ <u>PM_{2.5} Precursors</u>: SO₂ and NO_X as EPA default
 - In Arizona, VOC and ammonia are considered precursors in PM_{2.5} nonattainment areas too
 - MCAQD Rule 100 Section 200.112(b)
 - ADEQ AAC R18-2-101.124.a

FINE BEACH SAND

Source: https://www.epa.gov/pm-pollution

New Annual PM_{2.5} NAAQS – What to Expect?

- 2/7/2024: EPA announce the new annual PM_{2.5} NAAQS at <u>9 μg/m³</u>
 - Final rule has not yet been published on the federal register
- ► Now what?
 - Final rule issuance
 - NAAQS will be effective 60 days following final rule issuance
 - Several key state/federal decision-making dates will follow (next slides)
 - Anticipate litigation against new NAAQS (e.g., trade associations, etc.)
 - New annual PM_{2.5} Significant Impact Level (SIL) threshold – anticipated on or before new NAAQS effective date

Source: https://www.afandpa.org/news/2024/afpa-and-awc-respond-epas-pm-naaqs-rule

Modeling Thresholds – Including NAAQS and SILs

Currently under revision

New

PSD Significant Emission Rates (SERs), Significant Monitoring Concentrations (SMCs), Significant Impact Levels (SILs), PSD Increments and National Ambient Air Quality Standards (NAAQS) – Page 1 of 2

Pollutant	Averaging Period	PSD Significant Emission Rates (SERs) ^a (tons/year)	Significant Monitoring Concentrations (SMCs) (µg/m ³)	Class II Significant Impact Levels (SILs) (µg/m ³)	PSD Increments (µg/m ³)		National Ambient Air Quałity Standards (NAAQS) ^b				
					Cli I	ass II	Prin (µg/m³)	nary (ppm)	Secon (µg/m ³)	dary (ppm)	Form (i.e., How Standard is Applied)
PM ₁₀	Annual	15 ^e		1	4	17	50 ^d	6	50 ^d	^d	Annual arithmetic mean, averaged over 3 years ^d
	24-hour		10	5	8	30	150		150		Not to be exceeded more than once per year on average over 3 years
PM _{2.5}	Annual	10 of PM ₂₅ 40 of SO ₂ 40 of NO _X ^e		0.2 ^r	1	4	9.0		15.0		Annual arithmetic mean from single or multiple monitors, averaged over 3 years
	24-hour		0 ⁹	1.2 ^f	2	9	35		35		98th percentile of concentrations in a given year, averaged over 3 years
SO2 ^h	Annual	40		1	2	20	(80)	0.03			Annual arithmetic mean
	24-hour		13	5	5	91	(365)	0.14			Not to be exceeded more than once per calendar year
	3-hour			25	25	512			(1,300)	0.5	Not to be exceeded more than once per calendar year
	1-hour		i	i	i	i	(196)	0.075			3-year average of the 99 th percentile of the annual distribution of daily maximum 1-hour concentrations
	Annual		14	1	2.5	25	(100)	0.053	(100)	0.053	Annual arithmetic mean
NO ₂	1-hour	40 of NO _X	"J	i	i	i	(188)	0.1			3-year average of the 98 th percentile of the annual distribution of daily maximum 1-hour concentrations
Ozone	8-hour	40 of VOC or NO _X	VOC or NO _X emissions increase > 100 tpy	1 ppb		1	(137)	0.070	(137)	0.070	3-year average of annual 4th highest daily maximum 8-hour concentrations
co	8-hour	100	575	500		1	(10,000)	9			Not to be exceeded more than once per calendar year
	1-hour			2,000			(40,000)	35			Not to be exceeded more than once per calendar year
Lead ^j	Rolling 3- month avg.	0.6	0.1			-	0.15		0.15		Maximum arithmetic mean

New Annual PM_{2.5} NAAQS – Anticipated Timeline

Slide 1 of 2

New Annual PM_{2.5} NAAQS – Anticipated Timeline

Slide 2 of 2

2. Attainment/Nonattainment Designations

PM_{2.5} Attainment Designations in Arizona Slide 1 of 2

If ambient concentrations > NAAQS – "Nonattainment" (NA) Area

- Additional requirements for stationary sources of air pollutants
- Increasingly complex air permitting
- State regulations are more stringent
- In Arizona, anticipate PM₁₀ NA areas to "predict" location of future PM_{2.5} future NA areas

► Factors considered:

- Air Quality Data
- Emissions-Related Data
- Meteorology
- Geography/Topography
- Jurisdictional Boundaries

Note: NAAs will cover only a portion of the counties

Source: ADEQ presentation for the Arizona Chamber of Commerce meeting held on 11/7/2023

PM_{2.5} Attainment Designations in Arizona Slide 2 of 2

- What can you do as part of PM_{2.5} NAAQS attainment status designation process?
 - Respond to data requests from state/local authorities to inform proposed PM_{2.5} NAAQS designations
 - Ensure actual direct PM_{2.5} & PM_{2.5} precursor emissions inventory is complete, accurate, and fully representative of current plant sources
 - Follow state/local proposed designations for your area
 - Follow EPA "120-day letter" responses to state/local proposals
 - Follow EPA proposed designations in Federal Register, etc.
 - Discuss concerns with state/local agencies to improve outcomes (e.g., better nonattainment area boundaries)

3. Permitting and Modeling Impacts – Focus on Arizona

Scenarios - Current and Recent Permit Applications

- *** ***
- Project at a facility received a <u>final</u> permit before the <u>effective</u> date of the new PM_{2.5} NAAQS
 - No new requirements permitting already finalized
 - Facility can proceed with the project

- A facility has a permit action in process when the new PM_{2.5} NAAQS becomes <u>effective</u>
 - Modeling must be passing for <u>new</u> NAAQS (submit revised modeling if needed)
 - Source needs to submit revised modeling until above criteria is met
 - The agency may issue a final permit if modeling is approved

► Upcoming project will increase PM_{2.5} emissions and require modeling

- If attainment: Modeling must be passing for <u>new</u> NAAQS.
- If nonattainment area:
 - If minor NSR modeling triggered, need to pass for new NAAQS.
 - If federal nonattainment NSR permitting triggered, emission offsets (1:1 ratio) and LAER required

Permitting Impacts – Attainment Areas

- If local minor NSR or federal PSD review required for PM_{2.5}, anticipate challenges with modeling
- ► To demonstrate NAAQS compliance:

Site impacts + nearby source impacts + **background concentrations** < NAAQS

- ► Very little headroom in certain areas
 - <u>Example:</u> Yuma County has a background concentration of 8.9 μ g/m³ so site impacts and nearby sources can contribute a maximum of 0.1 μ g/m³ to meet the NAAQS.
 - Concerning for industrial growth!
 - Remember: passing model = permit = ability to construct

Source: https://www.afandpa.org/news/2024/afpa-and-awc-respond-epas-pm-naaqs-rule

More on Background Concentrations

- Preconstruction monitoring may be advantageous to obtain site-specific background PM_{2.5} data rather than relying on agency data collected in more polluted urban areas
- Some positive news retroactive adjustment of PM_{2.5} monitoring data – Certain EPA network monitors reported higher data that will be retroactively corrected before May 1, 2024.
- More updates to EPA monitor network due to Environmental Justice (EJ): For areas with additional required state or local air monitoring stations, a monitoring station is to be sited in an <u>at-risk community</u>

Permitting Impacts – New Nonattainment Areas

Slide 1 of 2

- In 2026: Anticipate nonattainment areas in the following counties: Maricopa, Pinal, Santa Cruz
 - Initial moderate nonattainment classification
 - 100 tpy major source threshold
- ► Projects at new major sources (PM_{2.5} emission increases ≥ 100 tpy) or major modifications at existing major sources (PM_{2.5} emission increases ≥ 40 tpy) → triggers nonattainment NSR (NNSR) permitting:
 - Complex requirements:
 - <u>Lowest Achievable Emission Rate (LAER)</u> Control technology evaluation more stringent than RACT and BACT.
 - Emission offsets \rightarrow Require offsets in 1:1 ratio
- Modeling is still a concern in nonattainment areas if minor NSR is triggered! Hard to achieve passing models with high background concentrations

Permitting Impacts – New Nonattainment Areas Slide 2 of 2

- Ammonia (NH₃) would become a regulated pollutant as a PM_{2.5} precursor in Arizona:
 - MCAQD Rule 100 Section 200.112(b)
 - ADEQ AAC R18-2-101.124.a
- ► In ADEQ, PM_{2.5} nonattainment areas, Class II permitting requirements may be triggered by NH₃ emissions ≥ 40 tpy
 - Upon SIP approval by EPA
 - f. In PM_{2.5} nonattainment areas, for purposes of determining the applicability of R18-2-403 or R18-2-404, an emission rate that would equal or exceed 40 tons per year of ammonia, as a precursor to PM_{2.5}. This subsection shall take effect on the effective date of the Administrator's action approving it as part of the state implementation plan.

Other Considerations – New PM_{2.5} Nonattainment Areas

- Local agencies are required to implement Reasonably Available Control Measures and Technology (RACM/RACT)
 - Clean Air Act (CAA) requirement to be addressed in the Nonattainment SIP
 - <u>RACM</u> "Any technologically and economically feasible measure that can be implemented in whole or in part within four years after the effective date of designation of a PM_{2.5} nonattainment area and that achieves permanent and enforceable reductions in direct PM2.5 emissions and/or PM2.5 plan precursor emissions from sources in the area."
 - Anticipate rule amendments to achieve implementation at existing sources in the nonattainment area
- ► CAA also requires reasonable further progress
- Risk of reclassification to "serious" status if attainment with the NAAQS is not achieved

Key Takeaways

- New PM_{2.5} NAAQS of **9 µg/m³** anticipated to become effective in Q1 2024 will result in additional modeling challenges for existing (pending permit) and future projects.
 - High background concentrations
 - EPA will also establish a new SIL before new NAAQS effective date
 - Concern for industrial growth
- Draft attainment/nonattainment designations ancticipated by Q3 of 2024
 - Discuss concerns with state/local agencies to improve outcomes
 - Anticipate nonattainment areas in the following: Maricopa, Pinal, and Santa Cruz counties.
- Lower NAAQS will result in more complex modeling triggered by minor NSR (attainment or nonattainment area) or PSD (attainment)
- RACM levels of control would need to be implemented by sources in nonattainment areas - Potential revisions to local regulations

Contact Us

Camille Ponce

<u>c.maradiagaponce@trinityconsultants.com</u> <u>Trinity Phoenix Office</u>

New Address: 702 East Osborn Road, Ste 160, Phoenix, Arizona 85014

Phone: (517) 285-4118

